Metamath Proof Explorer


Theorem fmptd2f

Description: Domain and codomain of the mapping operation; deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fmptd2f.1 x φ
fmptd2f.2 φ x A B C
Assertion fmptd2f φ x A B : A C

Proof

Step Hyp Ref Expression
1 fmptd2f.1 x φ
2 fmptd2f.2 φ x A B C
3 eqid x A B = x A B
4 1 2 3 fmptdf φ x A B : A C