Metamath Proof Explorer


Theorem fmptdf

Description: A version of fmptd using bound-variable hypothesis instead of a distinct variable condition for ph . (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses fmptdf.1 x φ
fmptdf.2 φ x A B C
fmptdf.3 F = x A B
Assertion fmptdf φ F : A C

Proof

Step Hyp Ref Expression
1 fmptdf.1 x φ
2 fmptdf.2 φ x A B C
3 fmptdf.3 F = x A B
4 2 ex φ x A B C
5 1 4 ralrimi φ x A B C
6 3 fmpt x A B C F : A C
7 5 6 sylib φ F : A C