Metamath Proof Explorer


Theorem fmptdff

Description: A version of fmptd using bound-variable hypothesis instead of a distinct variable condition for ph . (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses fmptdff.1 x φ
fmptdff.2 _ x A
fmptdff.3 _ x C
fmptdff.4 φ x A B C
fmptdff.5 F = x A B
Assertion fmptdff φ F : A C

Proof

Step Hyp Ref Expression
1 fmptdff.1 x φ
2 fmptdff.2 _ x A
3 fmptdff.3 _ x C
4 fmptdff.4 φ x A B C
5 fmptdff.5 F = x A B
6 1 4 ralrimia φ x A B C
7 2 3 5 fmptff x A B C F : A C
8 6 7 sylib φ F : A C