Metamath Proof Explorer


Theorem fmptf

Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fmptf.1 _ x B
fmptf.2 F = x A C
Assertion fmptf x A C B F : A B

Proof

Step Hyp Ref Expression
1 fmptf.1 _ x B
2 fmptf.2 F = x A C
3 nfv y C B
4 nfcsb1v _ x y / x C
5 4 1 nfel x y / x C B
6 csbeq1a x = y C = y / x C
7 6 eleq1d x = y C B y / x C B
8 3 5 7 cbvralw x A C B y A y / x C B
9 nfcv _ y C
10 9 4 6 cbvmpt x A C = y A y / x C
11 2 10 eqtri F = y A y / x C
12 11 fmpt y A y / x C B F : A B
13 8 12 bitri x A C B F : A B