Metamath Proof Explorer


Theorem fmptf

Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fmptf.1 _xB
fmptf.2 F=xAC
Assertion fmptf xACBF:AB

Proof

Step Hyp Ref Expression
1 fmptf.1 _xB
2 fmptf.2 F=xAC
3 nfv yCB
4 nfcsb1v _xy/xC
5 4 1 nfel xy/xCB
6 csbeq1a x=yC=y/xC
7 6 eleq1d x=yCBy/xCB
8 3 5 7 cbvralw xACByAy/xCB
9 nfcv _yC
10 9 4 6 cbvmpt xAC=yAy/xC
11 2 10 eqtri F=yAy/xC
12 11 fmpt yAy/xCBF:AB
13 8 12 bitri xACBF:AB