Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Functions
fmptf
Next ⟩
resimass
Metamath Proof Explorer
Ascii
Unicode
Theorem
fmptf
Description:
Functionality of the mapping operation.
(Contributed by
Glauco Siliprandi
, 23-Oct-2021)
Ref
Expression
Hypotheses
fmptf.1
⊢
Ⅎ
_
x
B
fmptf.2
⊢
F
=
x
∈
A
⟼
C
Assertion
fmptf
⊢
∀
x
∈
A
C
∈
B
↔
F
:
A
⟶
B
Proof
Step
Hyp
Ref
Expression
1
fmptf.1
⊢
Ⅎ
_
x
B
2
fmptf.2
⊢
F
=
x
∈
A
⟼
C
3
nfv
⊢
Ⅎ
y
C
∈
B
4
nfcsb1v
⊢
Ⅎ
_
x
⦋
y
/
x
⦌
C
5
4
1
nfel
⊢
Ⅎ
x
⦋
y
/
x
⦌
C
∈
B
6
csbeq1a
⊢
x
=
y
→
C
=
⦋
y
/
x
⦌
C
7
6
eleq1d
⊢
x
=
y
→
C
∈
B
↔
⦋
y
/
x
⦌
C
∈
B
8
3
5
7
cbvralw
⊢
∀
x
∈
A
C
∈
B
↔
∀
y
∈
A
⦋
y
/
x
⦌
C
∈
B
9
nfcv
⊢
Ⅎ
_
y
C
10
9
4
6
cbvmpt
⊢
x
∈
A
⟼
C
=
y
∈
A
⟼
⦋
y
/
x
⦌
C
11
2
10
eqtri
⊢
F
=
y
∈
A
⟼
⦋
y
/
x
⦌
C
12
11
fmpt
⊢
∀
y
∈
A
⦋
y
/
x
⦌
C
∈
B
↔
F
:
A
⟶
B
13
8
12
bitri
⊢
∀
x
∈
A
C
∈
B
↔
F
:
A
⟶
B