Metamath Proof Explorer


Theorem fmptff

Description: Functionality of the mapping operation. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses fmptff.1 _ x A
fmptff.2 _ x B
fmptff.3 F = x A C
Assertion fmptff x A C B F : A B

Proof

Step Hyp Ref Expression
1 fmptff.1 _ x A
2 fmptff.2 _ x B
3 fmptff.3 F = x A C
4 nfcv _ y A
5 nfv y C B
6 nfcsb1v _ x y / x C
7 6 2 nfel x y / x C B
8 csbeq1a x = y C = y / x C
9 8 eleq1d x = y C B y / x C B
10 1 4 5 7 9 cbvralfw x A C B y A y / x C B
11 nfcv _ y C
12 1 4 11 6 8 cbvmptf x A C = y A y / x C
13 3 12 eqtri F = y A y / x C
14 13 fmpt y A y / x C B F : A B
15 10 14 bitri x A C B F : A B