Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Functions
fmptff
Next ⟩
fvmptelcdmf
Metamath Proof Explorer
Ascii
Unicode
Theorem
fmptff
Description:
Functionality of the mapping operation.
(Contributed by
Glauco Siliprandi
, 5-Jan-2025)
Ref
Expression
Hypotheses
fmptff.1
⊢
Ⅎ
_
x
A
fmptff.2
⊢
Ⅎ
_
x
B
fmptff.3
⊢
F
=
x
∈
A
⟼
C
Assertion
fmptff
⊢
∀
x
∈
A
C
∈
B
↔
F
:
A
⟶
B
Proof
Step
Hyp
Ref
Expression
1
fmptff.1
⊢
Ⅎ
_
x
A
2
fmptff.2
⊢
Ⅎ
_
x
B
3
fmptff.3
⊢
F
=
x
∈
A
⟼
C
4
nfcv
⊢
Ⅎ
_
y
A
5
nfv
⊢
Ⅎ
y
C
∈
B
6
nfcsb1v
⊢
Ⅎ
_
x
⦋
y
/
x
⦌
C
7
6
2
nfel
⊢
Ⅎ
x
⦋
y
/
x
⦌
C
∈
B
8
csbeq1a
⊢
x
=
y
→
C
=
⦋
y
/
x
⦌
C
9
8
eleq1d
⊢
x
=
y
→
C
∈
B
↔
⦋
y
/
x
⦌
C
∈
B
10
1
4
5
7
9
cbvralfw
⊢
∀
x
∈
A
C
∈
B
↔
∀
y
∈
A
⦋
y
/
x
⦌
C
∈
B
11
nfcv
⊢
Ⅎ
_
y
C
12
1
4
11
6
8
cbvmptf
⊢
x
∈
A
⟼
C
=
y
∈
A
⟼
⦋
y
/
x
⦌
C
13
3
12
eqtri
⊢
F
=
y
∈
A
⟼
⦋
y
/
x
⦌
C
14
13
fmpt
⊢
∀
y
∈
A
⦋
y
/
x
⦌
C
∈
B
↔
F
:
A
⟶
B
15
10
14
bitri
⊢
∀
x
∈
A
C
∈
B
↔
F
:
A
⟶
B