Metamath Proof Explorer


Theorem fmptpr

Description: Express a pair function in maps-to notation. (Contributed by Thierry Arnoux, 3-Jan-2017)

Ref Expression
Hypotheses fmptpr.1 φ A V
fmptpr.2 φ B W
fmptpr.3 φ C X
fmptpr.4 φ D Y
fmptpr.5 φ x = A E = C
fmptpr.6 φ x = B E = D
Assertion fmptpr φ A C B D = x A B E

Proof

Step Hyp Ref Expression
1 fmptpr.1 φ A V
2 fmptpr.2 φ B W
3 fmptpr.3 φ C X
4 fmptpr.4 φ D Y
5 fmptpr.5 φ x = A E = C
6 fmptpr.6 φ x = B E = D
7 df-pr A C B D = A C B D
8 7 a1i φ A C B D = A C B D
9 5 1 3 fmptsnd φ A C = x A E
10 9 uneq1d φ A C B D = x A E B D
11 df-pr A B = A B
12 11 eqcomi A B = A B
13 12 a1i φ A B = A B
14 2 4 13 6 fmptapd φ x A E B D = x A B E
15 8 10 14 3eqtrd φ A C B D = x A B E