| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmptsnd.1 |
|
| 2 |
|
fmptsnd.2 |
|
| 3 |
|
fmptsnd.3 |
|
| 4 |
|
velsn |
|
| 5 |
4
|
bicomi |
|
| 6 |
5
|
anbi1i |
|
| 7 |
6
|
opabbii |
|
| 8 |
|
velsn |
|
| 9 |
|
eqidd |
|
| 10 |
|
eqidd |
|
| 11 |
|
sbcan |
|
| 12 |
|
sbcg |
|
| 13 |
3 12
|
syl |
|
| 14 |
|
eqsbc1 |
|
| 15 |
3 14
|
syl |
|
| 16 |
13 15
|
anbi12d |
|
| 17 |
11 16
|
bitrid |
|
| 18 |
17
|
sbcbidv |
|
| 19 |
|
eqeq1 |
|
| 20 |
19
|
adantl |
|
| 21 |
1
|
eqeq2d |
|
| 22 |
20 21
|
anbi12d |
|
| 23 |
2 22
|
sbcied |
|
| 24 |
18 23
|
bitrd |
|
| 25 |
9 10 24
|
mpbir2and |
|
| 26 |
|
opelopabsb |
|
| 27 |
25 26
|
sylibr |
|
| 28 |
|
eleq1 |
|
| 29 |
27 28
|
syl5ibrcom |
|
| 30 |
8 29
|
biimtrid |
|
| 31 |
|
elopab |
|
| 32 |
|
opeq12 |
|
| 33 |
32
|
adantl |
|
| 34 |
33
|
eqeq2d |
|
| 35 |
1
|
adantrr |
|
| 36 |
35
|
opeq2d |
|
| 37 |
|
opex |
|
| 38 |
37
|
snid |
|
| 39 |
36 38
|
eqeltrdi |
|
| 40 |
|
eleq1 |
|
| 41 |
39 40
|
syl5ibrcom |
|
| 42 |
34 41
|
sylbid |
|
| 43 |
42
|
ex |
|
| 44 |
43
|
impcomd |
|
| 45 |
44
|
exlimdvv |
|
| 46 |
31 45
|
biimtrid |
|
| 47 |
30 46
|
impbid |
|
| 48 |
47
|
eqrdv |
|
| 49 |
|
df-mpt |
|
| 50 |
49
|
a1i |
|
| 51 |
7 48 50
|
3eqtr4a |
|