Metamath Proof Explorer


Theorem fmptsng

Description: Express a singleton function in maps-to notation. Version of fmptsn allowing the value B to depend on the variable x . (Contributed by AV, 27-Feb-2019)

Ref Expression
Hypothesis fmptsng.1 x = A B = C
Assertion fmptsng A V C W A C = x A B

Proof

Step Hyp Ref Expression
1 fmptsng.1 x = A B = C
2 velsn x A x = A
3 2 bicomi x = A x A
4 3 anbi1i x = A y = B x A y = B
5 4 opabbii x y | x = A y = B = x y | x A y = B
6 velsn p A C p = A C
7 eqidd A V C W A = A
8 eqidd A V C W C = C
9 eqeq1 x = A x = A A = A
10 9 adantr x = A y = C x = A A = A
11 eqeq1 y = C y = B C = B
12 1 eqeq2d x = A C = B C = C
13 11 12 sylan9bbr x = A y = C y = B C = C
14 10 13 anbi12d x = A y = C x = A y = B A = A C = C
15 14 opelopabga A V C W A C x y | x = A y = B A = A C = C
16 7 8 15 mpbir2and A V C W A C x y | x = A y = B
17 eleq1 p = A C p x y | x = A y = B A C x y | x = A y = B
18 16 17 syl5ibrcom A V C W p = A C p x y | x = A y = B
19 6 18 syl5bi A V C W p A C p x y | x = A y = B
20 elopab p x y | x = A y = B x y p = x y x = A y = B
21 opeq12 x = A y = B x y = A B
22 21 eqeq2d x = A y = B p = x y p = A B
23 1 adantr x = A y = B B = C
24 23 opeq2d x = A y = B A B = A C
25 opex A C V
26 25 snid A C A C
27 24 26 eqeltrdi x = A y = B A B A C
28 eleq1 p = A B p A C A B A C
29 27 28 syl5ibrcom x = A y = B p = A B p A C
30 22 29 sylbid x = A y = B p = x y p A C
31 30 impcom p = x y x = A y = B p A C
32 31 exlimivv x y p = x y x = A y = B p A C
33 32 a1i A V C W x y p = x y x = A y = B p A C
34 20 33 syl5bi A V C W p x y | x = A y = B p A C
35 19 34 impbid A V C W p A C p x y | x = A y = B
36 35 eqrdv A V C W A C = x y | x = A y = B
37 df-mpt x A B = x y | x A y = B
38 37 a1i A V C W x A B = x y | x A y = B
39 5 36 38 3eqtr4a A V C W A C = x A B