Metamath Proof Explorer


Theorem fmucnd

Description: The image of a Cauchy filter base by an uniformly continuous function is a Cauchy filter base. Deduction form. Proposition 3 of BourbakiTop1 p. II.13. (Contributed by Thierry Arnoux, 18-Nov-2017)

Ref Expression
Hypotheses fmucnd.1 φ U UnifOn X
fmucnd.2 φ V UnifOn Y
fmucnd.3 φ F U uCn V
fmucnd.4 φ C CauFilU U
fmucnd.5 D = ran a C F a
Assertion fmucnd φ D CauFilU V

Proof

Step Hyp Ref Expression
1 fmucnd.1 φ U UnifOn X
2 fmucnd.2 φ V UnifOn Y
3 fmucnd.3 φ F U uCn V
4 fmucnd.4 φ C CauFilU U
5 fmucnd.5 D = ran a C F a
6 cfilufbas U UnifOn X C CauFilU U C fBas X
7 1 4 6 syl2anc φ C fBas X
8 isucn U UnifOn X V UnifOn Y F U uCn V F : X Y v V r U x X y X x r y F x v F y
9 8 simprbda U UnifOn X V UnifOn Y F U uCn V F : X Y
10 1 2 3 9 syl21anc φ F : X Y
11 2 elfvexd φ Y V
12 5 fbasrn C fBas X F : X Y Y V D fBas Y
13 7 10 11 12 syl3anc φ D fBas Y
14 simplr φ v V a C a × a x X , y X F x F y -1 v a C
15 eqid F a = F a
16 imaeq2 c = a F c = F a
17 16 rspceeqv a C F a = F a c C F a = F c
18 14 15 17 sylancl φ v V a C a × a x X , y X F x F y -1 v c C F a = F c
19 imaexg F U uCn V F a V
20 eqid c C F c = c C F c
21 20 elrnmpt F a V F a ran c C F c c C F a = F c
22 3 19 21 3syl φ F a ran c C F c c C F a = F c
23 22 ad3antrrr φ v V a C a × a x X , y X F x F y -1 v F a ran c C F c c C F a = F c
24 18 23 mpbird φ v V a C a × a x X , y X F x F y -1 v F a ran c C F c
25 imaeq2 a = c F a = F c
26 25 cbvmptv a C F a = c C F c
27 26 rneqi ran a C F a = ran c C F c
28 5 27 eqtri D = ran c C F c
29 24 28 eleqtrrdi φ v V a C a × a x X , y X F x F y -1 v F a D
30 10 ffnd φ F Fn X
31 30 ad3antrrr φ v V a C a × a x X , y X F x F y -1 v F Fn X
32 fbelss C fBas X a C a X
33 7 32 sylan φ a C a X
34 33 ad4ant13 φ v V a C a × a x X , y X F x F y -1 v a X
35 fmucndlem F Fn X a X x X , y X F x F y a × a = F a × F a
36 31 34 35 syl2anc φ v V a C a × a x X , y X F x F y -1 v x X , y X F x F y a × a = F a × F a
37 eqid x X , y X F x F y = x X , y X F x F y
38 37 mpofun Fun x X , y X F x F y
39 funimass2 Fun x X , y X F x F y a × a x X , y X F x F y -1 v x X , y X F x F y a × a v
40 38 39 mpan a × a x X , y X F x F y -1 v x X , y X F x F y a × a v
41 40 adantl φ v V a C a × a x X , y X F x F y -1 v x X , y X F x F y a × a v
42 36 41 eqsstrrd φ v V a C a × a x X , y X F x F y -1 v F a × F a v
43 id b = F a b = F a
44 43 sqxpeqd b = F a b × b = F a × F a
45 44 sseq1d b = F a b × b v F a × F a v
46 45 rspcev F a D F a × F a v b D b × b v
47 29 42 46 syl2anc φ v V a C a × a x X , y X F x F y -1 v b D b × b v
48 1 adantr φ v V U UnifOn X
49 4 adantr φ v V C CauFilU U
50 2 adantr φ v V V UnifOn Y
51 3 adantr φ v V F U uCn V
52 simpr φ v V v V
53 nfcv _ s F x F y
54 nfcv _ t F x F y
55 nfcv _ x F s F t
56 nfcv _ y F s F t
57 simpl x = s y = t x = s
58 57 fveq2d x = s y = t F x = F s
59 simpr x = s y = t y = t
60 59 fveq2d x = s y = t F y = F t
61 58 60 opeq12d x = s y = t F x F y = F s F t
62 53 54 55 56 61 cbvmpo x X , y X F x F y = s X , t X F s F t
63 48 50 51 52 62 ucnprima φ v V x X , y X F x F y -1 v U
64 cfiluexsm U UnifOn X C CauFilU U x X , y X F x F y -1 v U a C a × a x X , y X F x F y -1 v
65 48 49 63 64 syl3anc φ v V a C a × a x X , y X F x F y -1 v
66 47 65 r19.29a φ v V b D b × b v
67 66 ralrimiva φ v V b D b × b v
68 iscfilu V UnifOn Y D CauFilU V D fBas Y v V b D b × b v
69 2 68 syl φ D CauFilU V D fBas Y v V b D b × b v
70 13 67 69 mpbir2and φ D CauFilU V