Step |
Hyp |
Ref |
Expression |
1 |
|
fmucnd.1 |
|
2 |
|
fmucnd.2 |
|
3 |
|
fmucnd.3 |
|
4 |
|
fmucnd.4 |
|
5 |
|
fmucnd.5 |
|
6 |
|
cfilufbas |
|
7 |
1 4 6
|
syl2anc |
|
8 |
|
isucn |
|
9 |
8
|
simprbda |
|
10 |
1 2 3 9
|
syl21anc |
|
11 |
2
|
elfvexd |
|
12 |
5
|
fbasrn |
|
13 |
7 10 11 12
|
syl3anc |
|
14 |
|
simplr |
|
15 |
|
eqid |
|
16 |
|
imaeq2 |
|
17 |
16
|
rspceeqv |
|
18 |
14 15 17
|
sylancl |
|
19 |
|
imaexg |
|
20 |
|
eqid |
|
21 |
20
|
elrnmpt |
|
22 |
3 19 21
|
3syl |
|
23 |
22
|
ad3antrrr |
|
24 |
18 23
|
mpbird |
|
25 |
|
imaeq2 |
|
26 |
25
|
cbvmptv |
|
27 |
26
|
rneqi |
|
28 |
5 27
|
eqtri |
|
29 |
24 28
|
eleqtrrdi |
|
30 |
10
|
ffnd |
|
31 |
30
|
ad3antrrr |
|
32 |
|
fbelss |
|
33 |
7 32
|
sylan |
|
34 |
33
|
ad4ant13 |
|
35 |
|
fmucndlem |
|
36 |
31 34 35
|
syl2anc |
|
37 |
|
eqid |
|
38 |
37
|
mpofun |
|
39 |
|
funimass2 |
|
40 |
38 39
|
mpan |
|
41 |
40
|
adantl |
|
42 |
36 41
|
eqsstrrd |
|
43 |
|
id |
|
44 |
43
|
sqxpeqd |
|
45 |
44
|
sseq1d |
|
46 |
45
|
rspcev |
|
47 |
29 42 46
|
syl2anc |
|
48 |
1
|
adantr |
|
49 |
4
|
adantr |
|
50 |
2
|
adantr |
|
51 |
3
|
adantr |
|
52 |
|
simpr |
|
53 |
|
nfcv |
|
54 |
|
nfcv |
|
55 |
|
nfcv |
|
56 |
|
nfcv |
|
57 |
|
simpl |
|
58 |
57
|
fveq2d |
|
59 |
|
simpr |
|
60 |
59
|
fveq2d |
|
61 |
58 60
|
opeq12d |
|
62 |
53 54 55 56 61
|
cbvmpo |
|
63 |
48 50 51 52 62
|
ucnprima |
|
64 |
|
cfiluexsm |
|
65 |
48 49 63 64
|
syl3anc |
|
66 |
47 65
|
r19.29a |
|
67 |
66
|
ralrimiva |
|
68 |
|
iscfilu |
|
69 |
2 68
|
syl |
|
70 |
13 67 69
|
mpbir2and |
|