Metamath Proof Explorer


Theorem fmul01lt1

Description: Given a finite multiplication of values betweeen 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fmul01lt1.1 _ i B
fmul01lt1.2 i φ
fmul01lt1.3 _ j A
fmul01lt1.4 A = seq 1 × B
fmul01lt1.5 φ M
fmul01lt1.6 φ B : 1 M
fmul01lt1.7 φ i 1 M 0 B i
fmul01lt1.8 φ i 1 M B i 1
fmul01lt1.9 φ E +
fmul01lt1.10 φ j 1 M B j < E
Assertion fmul01lt1 φ A M < E

Proof

Step Hyp Ref Expression
1 fmul01lt1.1 _ i B
2 fmul01lt1.2 i φ
3 fmul01lt1.3 _ j A
4 fmul01lt1.4 A = seq 1 × B
5 fmul01lt1.5 φ M
6 fmul01lt1.6 φ B : 1 M
7 fmul01lt1.7 φ i 1 M 0 B i
8 fmul01lt1.8 φ i 1 M B i 1
9 fmul01lt1.9 φ E +
10 fmul01lt1.10 φ j 1 M B j < E
11 nfv j φ
12 nfcv _ j M
13 3 12 nffv _ j A M
14 nfcv _ j <
15 nfcv _ j E
16 13 14 15 nfbr j A M < E
17 nfv i j 1 M
18 nfcv _ i j
19 1 18 nffv _ i B j
20 nfcv _ i <
21 nfcv _ i E
22 19 20 21 nfbr i B j < E
23 2 17 22 nf3an i φ j 1 M B j < E
24 1zzd φ j 1 M B j < E 1
25 elnnuz M M 1
26 5 25 sylib φ M 1
27 26 3ad2ant1 φ j 1 M B j < E M 1
28 6 ffvelrnda φ i 1 M B i
29 28 3ad2antl1 φ j 1 M B j < E i 1 M B i
30 7 3ad2antl1 φ j 1 M B j < E i 1 M 0 B i
31 8 3ad2antl1 φ j 1 M B j < E i 1 M B i 1
32 9 3ad2ant1 φ j 1 M B j < E E +
33 simp2 φ j 1 M B j < E j 1 M
34 simp3 φ j 1 M B j < E B j < E
35 1 23 4 24 27 29 30 31 32 33 34 fmul01lt1lem2 φ j 1 M B j < E A M < E
36 35 3exp φ j 1 M B j < E A M < E
37 11 16 36 rexlimd φ j 1 M B j < E A M < E
38 10 37 mpd φ A M < E