Metamath Proof Explorer


Theorem fmul01lt1lem1

Description: Given a finite multiplication of values betweeen 0 and 1, a value larger than its first element is larger the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fmul01lt1lem1.1 _ i B
fmul01lt1lem1.2 i φ
fmul01lt1lem1.3 A = seq L × B
fmul01lt1lem1.4 φ L
fmul01lt1lem1.5 φ M L
fmul01lt1lem1.6 φ i L M B i
fmul01lt1lem1.7 φ i L M 0 B i
fmul01lt1lem1.8 φ i L M B i 1
fmul01lt1lem1.9 φ E +
fmul01lt1lem1.10 φ B L < E
Assertion fmul01lt1lem1 φ A M < E

Proof

Step Hyp Ref Expression
1 fmul01lt1lem1.1 _ i B
2 fmul01lt1lem1.2 i φ
3 fmul01lt1lem1.3 A = seq L × B
4 fmul01lt1lem1.4 φ L
5 fmul01lt1lem1.5 φ M L
6 fmul01lt1lem1.6 φ i L M B i
7 fmul01lt1lem1.7 φ i L M 0 B i
8 fmul01lt1lem1.8 φ i L M B i 1
9 fmul01lt1lem1.9 φ E +
10 fmul01lt1lem1.10 φ B L < E
11 simpr φ M = L M = L
12 11 fveq2d φ M = L A M = A L
13 3 a1i φ M = L A = seq L × B
14 13 fveq1d φ M = L A L = seq L × B L
15 seq1 L seq L × B L = B L
16 4 15 syl φ seq L × B L = B L
17 16 adantr φ M = L seq L × B L = B L
18 12 14 17 3eqtrd φ M = L A M = B L
19 10 adantr φ M = L B L < E
20 18 19 eqbrtrd φ M = L A M < E
21 simpr φ ¬ M = L ¬ M = L
22 21 neqned φ ¬ M = L M L
23 4 zred φ L
24 eluzelz M L M
25 5 24 syl φ M
26 25 zred φ M
27 eluzle M L L M
28 5 27 syl φ L M
29 23 26 28 3jca φ L M L M
30 29 adantr φ ¬ M = L L M L M
31 leltne L M L M L < M M L
32 30 31 syl φ ¬ M = L L < M M L
33 22 32 mpbird φ ¬ M = L L < M
34 3 fveq1i A M = seq L × B M
35 remulcl j k j k
36 35 adantl φ L < M j k j k
37 recn j j
38 37 3ad2ant1 j k l j
39 recn k k
40 39 3ad2ant2 j k l k
41 recn l l
42 41 3ad2ant3 j k l l
43 38 40 42 mulassd j k l j k l = j k l
44 43 adantl φ L < M j k l j k l = j k l
45 simpr φ L < M L < M
46 45 olcd φ L < M M < L L < M
47 26 23 jca φ M L
48 47 adantr φ L < M M L
49 lttri2 M L M L M < L L < M
50 48 49 syl φ L < M M L M < L L < M
51 46 50 mpbird φ L < M M L
52 51 neneqd φ L < M ¬ M = L
53 uzp1 M L M = L M L + 1
54 5 53 syl φ M = L M L + 1
55 54 adantr φ L < M M = L M L + 1
56 55 ord φ L < M ¬ M = L M L + 1
57 52 56 mpd φ L < M M L + 1
58 4 adantr φ L < M L
59 uzid L L L
60 58 59 syl φ L < M L L
61 nfv i j L M
62 2 61 nfan i φ j L M
63 nfcv _ i j
64 1 63 nffv _ i B j
65 64 nfel1 i B j
66 62 65 nfim i φ j L M B j
67 eleq1 i = j i L M j L M
68 67 anbi2d i = j φ i L M φ j L M
69 fveq2 i = j B i = B j
70 69 eleq1d i = j B i B j
71 68 70 imbi12d i = j φ i L M B i φ j L M B j
72 66 71 6 chvarfv φ j L M B j
73 72 adantlr φ L < M j L M B j
74 36 44 57 60 73 seqsplit φ L < M seq L × B M = seq L × B L seq L + 1 × B M
75 eluzfz1 M L L L M
76 5 75 syl φ L L M
77 76 ancli φ φ L L M
78 nfv i L L M
79 2 78 nfan i φ L L M
80 nfcv _ i L
81 1 80 nffv _ i B L
82 81 nfel1 i B L
83 79 82 nfim i φ L L M B L
84 eleq1 i = L i L M L L M
85 84 anbi2d i = L φ i L M φ L L M
86 fveq2 i = L B i = B L
87 86 eleq1d i = L B i B L
88 85 87 imbi12d i = L φ i L M B i φ L L M B L
89 83 88 6 vtoclg1f L L M φ L L M B L
90 76 77 89 sylc φ B L
91 16 90 eqeltrd φ seq L × B L
92 91 adantr φ L < M seq L × B L
93 4 adantr φ j L + 1 M L
94 25 adantr φ j L + 1 M M
95 elfzelz j L + 1 M j
96 95 adantl φ j L + 1 M j
97 23 adantr φ j L + 1 M L
98 peano2re L L + 1
99 23 98 syl φ L + 1
100 99 adantr φ j L + 1 M L + 1
101 95 zred j L + 1 M j
102 101 adantl φ j L + 1 M j
103 23 lep1d φ L L + 1
104 103 adantr φ j L + 1 M L L + 1
105 elfzle1 j L + 1 M L + 1 j
106 105 adantl φ j L + 1 M L + 1 j
107 97 100 102 104 106 letrd φ j L + 1 M L j
108 elfzle2 j L + 1 M j M
109 108 adantl φ j L + 1 M j M
110 93 94 96 107 109 elfzd φ j L + 1 M j L M
111 110 72 syldan φ j L + 1 M B j
112 111 adantlr φ L < M j L + 1 M B j
113 57 112 36 seqcl φ L < M seq L + 1 × B M
114 92 113 remulcld φ L < M seq L × B L seq L + 1 × B M
115 9 rpred φ E
116 115 adantr φ L < M E
117 1red φ L < M 1
118 nfcv _ i 0
119 nfcv _ i
120 118 119 81 nfbr i 0 B L
121 79 120 nfim i φ L L M 0 B L
122 86 breq2d i = L 0 B i 0 B L
123 85 122 imbi12d i = L φ i L M 0 B i φ L L M 0 B L
124 121 123 7 vtoclg1f L L M φ L L M 0 B L
125 76 77 124 sylc φ 0 B L
126 125 16 breqtrrd φ 0 seq L × B L
127 126 adantr φ L < M 0 seq L × B L
128 nfv i L < M
129 2 128 nfan i φ L < M
130 eqid seq L + 1 × B = seq L + 1 × B
131 4 peano2zd φ L + 1
132 131 adantr φ L < M L + 1
133 23 adantr φ L < M L
134 133 45 gtned φ L < M M L
135 134 neneqd φ L < M ¬ M = L
136 5 adantr φ L < M M L
137 136 53 syl φ L < M M = L M L + 1
138 orel1 ¬ M = L M = L M L + 1 M L + 1
139 135 137 138 sylc φ L < M M L + 1
140 25 adantr φ L < M M
141 zltp1le L M L < M L + 1 M
142 58 140 141 syl2anc φ L < M L < M L + 1 M
143 45 142 mpbid φ L < M L + 1 M
144 26 adantr φ L < M M
145 144 leidd φ L < M M M
146 132 140 140 143 145 elfzd φ L < M M L + 1 M
147 4 adantr φ i L + 1 M L
148 25 adantr φ i L + 1 M M
149 elfzelz i L + 1 M i
150 149 adantl φ i L + 1 M i
151 23 adantr φ i L + 1 M L
152 151 98 syl φ i L + 1 M L + 1
153 149 zred i L + 1 M i
154 153 adantl φ i L + 1 M i
155 103 adantr φ i L + 1 M L L + 1
156 elfzle1 i L + 1 M L + 1 i
157 156 adantl φ i L + 1 M L + 1 i
158 151 152 154 155 157 letrd φ i L + 1 M L i
159 elfzle2 i L + 1 M i M
160 159 adantl φ i L + 1 M i M
161 147 148 150 158 160 elfzd φ i L + 1 M i L M
162 161 6 syldan φ i L + 1 M B i
163 162 adantlr φ L < M i L + 1 M B i
164 simpll φ L < M i L + 1 M φ
165 4 ad2antrr φ L < M i L + 1 M L
166 25 ad2antrr φ L < M i L + 1 M M
167 149 adantl φ L < M i L + 1 M i
168 23 ad2antrr φ L < M i L + 1 M L
169 99 ad2antrr φ L < M i L + 1 M L + 1
170 153 adantl φ L < M i L + 1 M i
171 103 ad2antrr φ L < M i L + 1 M L L + 1
172 156 adantl φ L < M i L + 1 M L + 1 i
173 168 169 170 171 172 letrd φ L < M i L + 1 M L i
174 159 adantl φ L < M i L + 1 M i M
175 165 166 167 173 174 elfzd φ L < M i L + 1 M i L M
176 164 175 7 syl2anc φ L < M i L + 1 M 0 B i
177 164 175 8 syl2anc φ L < M i L + 1 M B i 1
178 1 129 130 132 139 146 163 176 177 fmul01 φ L < M 0 seq L + 1 × B M seq L + 1 × B M 1
179 178 simprd φ L < M seq L + 1 × B M 1
180 113 117 92 127 179 lemul2ad φ L < M seq L × B L seq L + 1 × B M seq L × B L 1
181 91 recnd φ seq L × B L
182 181 mulid1d φ seq L × B L 1 = seq L × B L
183 182 adantr φ L < M seq L × B L 1 = seq L × B L
184 180 183 breqtrd φ L < M seq L × B L seq L + 1 × B M seq L × B L
185 16 10 eqbrtrd φ seq L × B L < E
186 185 adantr φ L < M seq L × B L < E
187 114 92 116 184 186 lelttrd φ L < M seq L × B L seq L + 1 × B M < E
188 74 187 eqbrtrd φ L < M seq L × B M < E
189 34 188 eqbrtrid φ L < M A M < E
190 33 189 syldan φ ¬ M = L A M < E
191 20 190 pm2.61dan φ A M < E