Metamath Proof Explorer


Theorem fmul01lt1lem2

Description: Given a finite multiplication of values betweeen 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fmul01lt1lem2.1 _ i B
fmul01lt1lem2.2 i φ
fmul01lt1lem2.3 A = seq L × B
fmul01lt1lem2.4 φ L
fmul01lt1lem2.5 φ M L
fmul01lt1lem2.6 φ i L M B i
fmul01lt1lem2.7 φ i L M 0 B i
fmul01lt1lem2.8 φ i L M B i 1
fmul01lt1lem2.9 φ E +
fmul01lt1lem2.10 φ J L M
fmul01lt1lem2.11 φ B J < E
Assertion fmul01lt1lem2 φ A M < E

Proof

Step Hyp Ref Expression
1 fmul01lt1lem2.1 _ i B
2 fmul01lt1lem2.2 i φ
3 fmul01lt1lem2.3 A = seq L × B
4 fmul01lt1lem2.4 φ L
5 fmul01lt1lem2.5 φ M L
6 fmul01lt1lem2.6 φ i L M B i
7 fmul01lt1lem2.7 φ i L M 0 B i
8 fmul01lt1lem2.8 φ i L M B i 1
9 fmul01lt1lem2.9 φ E +
10 fmul01lt1lem2.10 φ J L M
11 fmul01lt1lem2.11 φ B J < E
12 nfv i J = L
13 2 12 nfan i φ J = L
14 4 adantr φ J = L L
15 5 adantr φ J = L M L
16 6 adantlr φ J = L i L M B i
17 7 adantlr φ J = L i L M 0 B i
18 8 adantlr φ J = L i L M B i 1
19 9 adantr φ J = L E +
20 simpr φ J = L J = L
21 20 fveq2d φ J = L B J = B L
22 11 adantr φ J = L B J < E
23 21 22 eqbrtrrd φ J = L B L < E
24 1 13 3 14 15 16 17 18 19 23 fmul01lt1lem1 φ J = L A M < E
25 3 fveq1i A M = seq L × B M
26 nfv i a L M
27 2 26 nfan i φ a L M
28 nfcv _ i a
29 1 28 nffv _ i B a
30 29 nfel1 i B a
31 27 30 nfim i φ a L M B a
32 eleq1w i = a i L M a L M
33 32 anbi2d i = a φ i L M φ a L M
34 fveq2 i = a B i = B a
35 34 eleq1d i = a B i B a
36 33 35 imbi12d i = a φ i L M B i φ a L M B a
37 31 36 6 chvarfv φ a L M B a
38 remulcl a j a j
39 38 adantl φ a j a j
40 5 37 39 seqcl φ seq L × B M
41 40 adantr φ ¬ J = L seq L × B M
42 elfzuz3 J L M M J
43 10 42 syl φ M J
44 nfv i a J M
45 2 44 nfan i φ a J M
46 45 30 nfim i φ a J M B a
47 eleq1w i = a i J M a J M
48 47 anbi2d i = a φ i J M φ a J M
49 48 35 imbi12d i = a φ i J M B i φ a J M B a
50 4 adantr φ i J M L
51 eluzelz M L M
52 5 51 syl φ M
53 52 adantr φ i J M M
54 elfzelz i J M i
55 54 adantl φ i J M i
56 4 zred φ L
57 56 adantr φ i J M L
58 elfzelz J L M J
59 10 58 syl φ J
60 59 zred φ J
61 60 adantr φ i J M J
62 54 zred i J M i
63 62 adantl φ i J M i
64 elfzle1 J L M L J
65 10 64 syl φ L J
66 65 adantr φ i J M L J
67 elfzle1 i J M J i
68 67 adantl φ i J M J i
69 57 61 63 66 68 letrd φ i J M L i
70 elfzle2 i J M i M
71 70 adantl φ i J M i M
72 50 53 55 69 71 elfzd φ i J M i L M
73 72 6 syldan φ i J M B i
74 46 49 73 chvarfv φ a J M B a
75 43 74 39 seqcl φ seq J × B M
76 75 adantr φ ¬ J = L seq J × B M
77 9 rpred φ E
78 77 adantr φ ¬ J = L E
79 remulcl a b a b
80 79 adantl φ ¬ J = L a b a b
81 simp1 a b c a
82 81 recnd a b c a
83 simp2 a b c b
84 83 recnd a b c b
85 simp3 a b c c
86 85 recnd a b c c
87 82 84 86 mulassd a b c a b c = a b c
88 87 adantl φ ¬ J = L a b c a b c = a b c
89 59 zcnd φ J
90 1cnd φ 1
91 89 90 npcand φ J - 1 + 1 = J
92 91 fveq2d φ J - 1 + 1 = J
93 43 92 eleqtrrd φ M J - 1 + 1
94 93 adantr φ ¬ J = L M J - 1 + 1
95 4 adantr φ ¬ J = L L
96 59 adantr φ ¬ J = L J
97 1zzd φ ¬ J = L 1
98 96 97 zsubcld φ ¬ J = L J 1
99 simpr φ ¬ J = L ¬ J = L
100 eqcom J = L L = J
101 99 100 sylnib φ ¬ J = L ¬ L = J
102 56 60 leloed φ L J L < J L = J
103 65 102 mpbid φ L < J L = J
104 103 adantr φ ¬ J = L L < J L = J
105 orel2 ¬ L = J L < J L = J L < J
106 101 104 105 sylc φ ¬ J = L L < J
107 zltlem1 L J L < J L J 1
108 4 59 107 syl2anc φ L < J L J 1
109 108 adantr φ ¬ J = L L < J L J 1
110 106 109 mpbid φ ¬ J = L L J 1
111 eluz2 J 1 L L J 1 L J 1
112 95 98 110 111 syl3anbrc φ ¬ J = L J 1 L
113 nfv i ¬ J = L
114 2 113 nfan i φ ¬ J = L
115 114 26 nfan i φ ¬ J = L a L M
116 115 30 nfim i φ ¬ J = L a L M B a
117 32 anbi2d i = a φ ¬ J = L i L M φ ¬ J = L a L M
118 117 35 imbi12d i = a φ ¬ J = L i L M B i φ ¬ J = L a L M B a
119 6 adantlr φ ¬ J = L i L M B i
120 116 118 119 chvarfv φ ¬ J = L a L M B a
121 80 88 94 112 120 seqsplit φ ¬ J = L seq L × B M = seq L × B J 1 seq J - 1 + 1 × B M
122 91 adantr φ ¬ J = L J - 1 + 1 = J
123 122 seqeq1d φ ¬ J = L seq J - 1 + 1 × B = seq J × B
124 123 fveq1d φ ¬ J = L seq J - 1 + 1 × B M = seq J × B M
125 124 oveq2d φ ¬ J = L seq L × B J 1 seq J - 1 + 1 × B M = seq L × B J 1 seq J × B M
126 121 125 eqtrd φ ¬ J = L seq L × B M = seq L × B J 1 seq J × B M
127 nfv i a L J 1
128 114 127 nfan i φ ¬ J = L a L J 1
129 128 30 nfim i φ ¬ J = L a L J 1 B a
130 eleq1w i = a i L J 1 a L J 1
131 130 anbi2d i = a φ ¬ J = L i L J 1 φ ¬ J = L a L J 1
132 131 35 imbi12d i = a φ ¬ J = L i L J 1 B i φ ¬ J = L a L J 1 B a
133 4 adantr φ i L J 1 L
134 52 adantr φ i L J 1 M
135 elfzelz i L J 1 i
136 135 adantl φ i L J 1 i
137 elfzle1 i L J 1 L i
138 137 adantl φ i L J 1 L i
139 135 zred i L J 1 i
140 139 adantl φ i L J 1 i
141 60 adantr φ i L J 1 J
142 52 zred φ M
143 142 adantr φ i L J 1 M
144 1red φ 1
145 60 144 resubcld φ J 1
146 145 adantr φ i L J 1 J 1
147 elfzle2 i L J 1 i J 1
148 147 adantl φ i L J 1 i J 1
149 60 lem1d φ J 1 J
150 149 adantr φ i L J 1 J 1 J
151 140 146 141 148 150 letrd φ i L J 1 i J
152 elfzle2 J L M J M
153 10 152 syl φ J M
154 153 adantr φ i L J 1 J M
155 140 141 143 151 154 letrd φ i L J 1 i M
156 133 134 136 138 155 elfzd φ i L J 1 i L M
157 156 6 syldan φ i L J 1 B i
158 157 adantlr φ ¬ J = L i L J 1 B i
159 129 132 158 chvarfv φ ¬ J = L a L J 1 B a
160 38 adantl φ ¬ J = L a j a j
161 112 159 160 seqcl φ ¬ J = L seq L × B J 1
162 1red φ ¬ J = L 1
163 eqid seq J × B = seq J × B
164 43 adantr φ ¬ J = L M J
165 eluzfz2 M J M J M
166 43 165 syl φ M J M
167 166 adantr φ ¬ J = L M J M
168 73 adantlr φ ¬ J = L i J M B i
169 72 7 syldan φ i J M 0 B i
170 169 adantlr φ ¬ J = L i J M 0 B i
171 72 8 syldan φ i J M B i 1
172 171 adantlr φ ¬ J = L i J M B i 1
173 1 114 163 96 164 167 168 170 172 fmul01 φ ¬ J = L 0 seq J × B M seq J × B M 1
174 173 simpld φ ¬ J = L 0 seq J × B M
175 eqid seq L × B = seq L × B
176 5 adantr φ ¬ J = L M L
177 1zzd φ 1
178 59 177 zsubcld φ J 1
179 4 52 178 3jca φ L M J 1
180 179 adantr φ ¬ J = L L M J 1
181 145 60 142 3jca φ J 1 J M
182 181 adantr φ ¬ J = L J 1 J M
183 60 adantr φ ¬ J = L J
184 183 lem1d φ ¬ J = L J 1 J
185 153 adantr φ ¬ J = L J M
186 184 185 jca φ ¬ J = L J 1 J J M
187 letr J 1 J M J 1 J J M J 1 M
188 182 186 187 sylc φ ¬ J = L J 1 M
189 110 188 jca φ ¬ J = L L J 1 J 1 M
190 elfz2 J 1 L M L M J 1 L J 1 J 1 M
191 180 189 190 sylanbrc φ ¬ J = L J 1 L M
192 7 adantlr φ ¬ J = L i L M 0 B i
193 8 adantlr φ ¬ J = L i L M B i 1
194 1 114 175 95 176 191 119 192 193 fmul01 φ ¬ J = L 0 seq L × B J 1 seq L × B J 1 1
195 194 simprd φ ¬ J = L seq L × B J 1 1
196 161 162 76 174 195 lemul1ad φ ¬ J = L seq L × B J 1 seq J × B M 1 seq J × B M
197 126 196 eqbrtrd φ ¬ J = L seq L × B M 1 seq J × B M
198 76 recnd φ ¬ J = L seq J × B M
199 198 mulid2d φ ¬ J = L 1 seq J × B M = seq J × B M
200 197 199 breqtrd φ ¬ J = L seq L × B M seq J × B M
201 1 2 163 59 43 73 169 171 9 11 fmul01lt1lem1 φ seq J × B M < E
202 201 adantr φ ¬ J = L seq J × B M < E
203 41 76 78 200 202 lelttrd φ ¬ J = L seq L × B M < E
204 25 203 eqbrtrid φ ¬ J = L A M < E
205 24 204 pm2.61dan φ A M < E