Step |
Hyp |
Ref |
Expression |
1 |
|
fmul01lt1lem2.1 |
|
2 |
|
fmul01lt1lem2.2 |
|
3 |
|
fmul01lt1lem2.3 |
|
4 |
|
fmul01lt1lem2.4 |
|
5 |
|
fmul01lt1lem2.5 |
|
6 |
|
fmul01lt1lem2.6 |
|
7 |
|
fmul01lt1lem2.7 |
|
8 |
|
fmul01lt1lem2.8 |
|
9 |
|
fmul01lt1lem2.9 |
|
10 |
|
fmul01lt1lem2.10 |
|
11 |
|
fmul01lt1lem2.11 |
|
12 |
|
nfv |
|
13 |
2 12
|
nfan |
|
14 |
4
|
adantr |
|
15 |
5
|
adantr |
|
16 |
6
|
adantlr |
|
17 |
7
|
adantlr |
|
18 |
8
|
adantlr |
|
19 |
9
|
adantr |
|
20 |
|
simpr |
|
21 |
20
|
fveq2d |
|
22 |
11
|
adantr |
|
23 |
21 22
|
eqbrtrrd |
|
24 |
1 13 3 14 15 16 17 18 19 23
|
fmul01lt1lem1 |
|
25 |
3
|
fveq1i |
|
26 |
|
nfv |
|
27 |
2 26
|
nfan |
|
28 |
|
nfcv |
|
29 |
1 28
|
nffv |
|
30 |
29
|
nfel1 |
|
31 |
27 30
|
nfim |
|
32 |
|
eleq1w |
|
33 |
32
|
anbi2d |
|
34 |
|
fveq2 |
|
35 |
34
|
eleq1d |
|
36 |
33 35
|
imbi12d |
|
37 |
31 36 6
|
chvarfv |
|
38 |
|
remulcl |
|
39 |
38
|
adantl |
|
40 |
5 37 39
|
seqcl |
|
41 |
40
|
adantr |
|
42 |
|
elfzuz3 |
|
43 |
10 42
|
syl |
|
44 |
|
nfv |
|
45 |
2 44
|
nfan |
|
46 |
45 30
|
nfim |
|
47 |
|
eleq1w |
|
48 |
47
|
anbi2d |
|
49 |
48 35
|
imbi12d |
|
50 |
4
|
adantr |
|
51 |
|
eluzelz |
|
52 |
5 51
|
syl |
|
53 |
52
|
adantr |
|
54 |
|
elfzelz |
|
55 |
54
|
adantl |
|
56 |
4
|
zred |
|
57 |
56
|
adantr |
|
58 |
|
elfzelz |
|
59 |
10 58
|
syl |
|
60 |
59
|
zred |
|
61 |
60
|
adantr |
|
62 |
54
|
zred |
|
63 |
62
|
adantl |
|
64 |
|
elfzle1 |
|
65 |
10 64
|
syl |
|
66 |
65
|
adantr |
|
67 |
|
elfzle1 |
|
68 |
67
|
adantl |
|
69 |
57 61 63 66 68
|
letrd |
|
70 |
|
elfzle2 |
|
71 |
70
|
adantl |
|
72 |
50 53 55 69 71
|
elfzd |
|
73 |
72 6
|
syldan |
|
74 |
46 49 73
|
chvarfv |
|
75 |
43 74 39
|
seqcl |
|
76 |
75
|
adantr |
|
77 |
9
|
rpred |
|
78 |
77
|
adantr |
|
79 |
|
remulcl |
|
80 |
79
|
adantl |
|
81 |
|
simp1 |
|
82 |
81
|
recnd |
|
83 |
|
simp2 |
|
84 |
83
|
recnd |
|
85 |
|
simp3 |
|
86 |
85
|
recnd |
|
87 |
82 84 86
|
mulassd |
|
88 |
87
|
adantl |
|
89 |
59
|
zcnd |
|
90 |
|
1cnd |
|
91 |
89 90
|
npcand |
|
92 |
91
|
fveq2d |
|
93 |
43 92
|
eleqtrrd |
|
94 |
93
|
adantr |
|
95 |
4
|
adantr |
|
96 |
59
|
adantr |
|
97 |
|
1zzd |
|
98 |
96 97
|
zsubcld |
|
99 |
|
simpr |
|
100 |
|
eqcom |
|
101 |
99 100
|
sylnib |
|
102 |
56 60
|
leloed |
|
103 |
65 102
|
mpbid |
|
104 |
103
|
adantr |
|
105 |
|
orel2 |
|
106 |
101 104 105
|
sylc |
|
107 |
|
zltlem1 |
|
108 |
4 59 107
|
syl2anc |
|
109 |
108
|
adantr |
|
110 |
106 109
|
mpbid |
|
111 |
|
eluz2 |
|
112 |
95 98 110 111
|
syl3anbrc |
|
113 |
|
nfv |
|
114 |
2 113
|
nfan |
|
115 |
114 26
|
nfan |
|
116 |
115 30
|
nfim |
|
117 |
32
|
anbi2d |
|
118 |
117 35
|
imbi12d |
|
119 |
6
|
adantlr |
|
120 |
116 118 119
|
chvarfv |
|
121 |
80 88 94 112 120
|
seqsplit |
|
122 |
91
|
adantr |
|
123 |
122
|
seqeq1d |
|
124 |
123
|
fveq1d |
|
125 |
124
|
oveq2d |
|
126 |
121 125
|
eqtrd |
|
127 |
|
nfv |
|
128 |
114 127
|
nfan |
|
129 |
128 30
|
nfim |
|
130 |
|
eleq1w |
|
131 |
130
|
anbi2d |
|
132 |
131 35
|
imbi12d |
|
133 |
4
|
adantr |
|
134 |
52
|
adantr |
|
135 |
|
elfzelz |
|
136 |
135
|
adantl |
|
137 |
|
elfzle1 |
|
138 |
137
|
adantl |
|
139 |
135
|
zred |
|
140 |
139
|
adantl |
|
141 |
60
|
adantr |
|
142 |
52
|
zred |
|
143 |
142
|
adantr |
|
144 |
|
1red |
|
145 |
60 144
|
resubcld |
|
146 |
145
|
adantr |
|
147 |
|
elfzle2 |
|
148 |
147
|
adantl |
|
149 |
60
|
lem1d |
|
150 |
149
|
adantr |
|
151 |
140 146 141 148 150
|
letrd |
|
152 |
|
elfzle2 |
|
153 |
10 152
|
syl |
|
154 |
153
|
adantr |
|
155 |
140 141 143 151 154
|
letrd |
|
156 |
133 134 136 138 155
|
elfzd |
|
157 |
156 6
|
syldan |
|
158 |
157
|
adantlr |
|
159 |
129 132 158
|
chvarfv |
|
160 |
38
|
adantl |
|
161 |
112 159 160
|
seqcl |
|
162 |
|
1red |
|
163 |
|
eqid |
|
164 |
43
|
adantr |
|
165 |
|
eluzfz2 |
|
166 |
43 165
|
syl |
|
167 |
166
|
adantr |
|
168 |
73
|
adantlr |
|
169 |
72 7
|
syldan |
|
170 |
169
|
adantlr |
|
171 |
72 8
|
syldan |
|
172 |
171
|
adantlr |
|
173 |
1 114 163 96 164 167 168 170 172
|
fmul01 |
|
174 |
173
|
simpld |
|
175 |
|
eqid |
|
176 |
5
|
adantr |
|
177 |
|
1zzd |
|
178 |
59 177
|
zsubcld |
|
179 |
4 52 178
|
3jca |
|
180 |
179
|
adantr |
|
181 |
145 60 142
|
3jca |
|
182 |
181
|
adantr |
|
183 |
60
|
adantr |
|
184 |
183
|
lem1d |
|
185 |
153
|
adantr |
|
186 |
184 185
|
jca |
|
187 |
|
letr |
|
188 |
182 186 187
|
sylc |
|
189 |
110 188
|
jca |
|
190 |
|
elfz2 |
|
191 |
180 189 190
|
sylanbrc |
|
192 |
7
|
adantlr |
|
193 |
8
|
adantlr |
|
194 |
1 114 175 95 176 191 119 192 193
|
fmul01 |
|
195 |
194
|
simprd |
|
196 |
161 162 76 174 195
|
lemul1ad |
|
197 |
126 196
|
eqbrtrd |
|
198 |
76
|
recnd |
|
199 |
198
|
mulid2d |
|
200 |
197 199
|
breqtrd |
|
201 |
1 2 163 59 43 73 169 171 9 11
|
fmul01lt1lem1 |
|
202 |
201
|
adantr |
|
203 |
41 76 78 200 202
|
lelttrd |
|
204 |
25 203
|
eqbrtrid |
|
205 |
24 204
|
pm2.61dan |
|