| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fmulcl.1 |
|
| 2 |
|
fmulcl.2 |
|
| 3 |
|
fmulcl.4 |
|
| 4 |
|
fmulcl.5 |
|
| 5 |
|
fmulcl.6 |
|
| 6 |
|
fmulcl.7 |
|
| 7 |
|
elfzuz |
|
| 8 |
3 7
|
syl |
|
| 9 |
|
elfzuz3 |
|
| 10 |
|
fzss2 |
|
| 11 |
3 9 10
|
3syl |
|
| 12 |
11
|
sselda |
|
| 13 |
4
|
ffvelcdmda |
|
| 14 |
12 13
|
syldan |
|
| 15 |
|
simprl |
|
| 16 |
|
simprr |
|
| 17 |
6
|
adantr |
|
| 18 |
|
mptexg |
|
| 19 |
17 18
|
syl |
|
| 20 |
|
fveq1 |
|
| 21 |
|
fveq1 |
|
| 22 |
20 21
|
oveqan12d |
|
| 23 |
22
|
mpteq2dv |
|
| 24 |
23 1
|
ovmpoga |
|
| 25 |
15 16 19 24
|
syl3anc |
|
| 26 |
|
3simpc |
|
| 27 |
|
eleq1w |
|
| 28 |
27
|
3anbi2d |
|
| 29 |
20
|
oveq1d |
|
| 30 |
29
|
mpteq2dv |
|
| 31 |
30
|
eleq1d |
|
| 32 |
28 31
|
imbi12d |
|
| 33 |
|
eleq1w |
|
| 34 |
33
|
3anbi3d |
|
| 35 |
21
|
oveq2d |
|
| 36 |
35
|
mpteq2dv |
|
| 37 |
36
|
eleq1d |
|
| 38 |
34 37
|
imbi12d |
|
| 39 |
32 38 5
|
vtocl2g |
|
| 40 |
26 39
|
mpcom |
|
| 41 |
40
|
3expb |
|
| 42 |
25 41
|
eqeltrd |
|
| 43 |
8 14 42
|
seqcl |
|
| 44 |
2 43
|
eqeltrid |
|