Metamath Proof Explorer


Theorem fmuldfeq

Description: X and Z are two equivalent definitions of the finite product of real functions. Y is a set of real functions from a common domain T, Y is closed under function multiplication and U is a finite sequence of functions in Y. M is the number of functions multiplied together. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fmuldfeq.1 i φ
fmuldfeq.2 _ t Y
fmuldfeq.3 P = f Y , g Y t T f t g t
fmuldfeq.4 X = seq 1 P U M
fmuldfeq.5 F = t T i 1 M U i t
fmuldfeq.6 Z = t T seq 1 × F t M
fmuldfeq.7 φ T V
fmuldfeq.8 φ M
fmuldfeq.9 φ U : 1 M Y
fmuldfeq.10 φ f Y f : T
fmuldfeq.11 φ f Y g Y t T f t g t Y
Assertion fmuldfeq φ t T X t = Z t

Proof

Step Hyp Ref Expression
1 fmuldfeq.1 i φ
2 fmuldfeq.2 _ t Y
3 fmuldfeq.3 P = f Y , g Y t T f t g t
4 fmuldfeq.4 X = seq 1 P U M
5 fmuldfeq.5 F = t T i 1 M U i t
6 fmuldfeq.6 Z = t T seq 1 × F t M
7 fmuldfeq.7 φ T V
8 fmuldfeq.8 φ M
9 fmuldfeq.9 φ U : 1 M Y
10 fmuldfeq.10 φ f Y f : T
11 fmuldfeq.11 φ f Y g Y t T f t g t Y
12 1zzd φ t T 1
13 8 nnzd φ M
14 13 adantr φ t T M
15 8 nnge1d φ 1 M
16 15 adantr φ t T 1 M
17 nnre M M
18 leid M M M
19 8 17 18 3syl φ M M
20 19 adantr φ t T M M
21 12 14 14 16 20 elfzd φ t T M 1 M
22 8 3ad2ant1 φ t T M 1 M M
23 eleq1 m = 1 m 1 M 1 1 M
24 23 3anbi3d m = 1 φ t T m 1 M φ t T 1 1 M
25 fveq2 m = 1 seq 1 P U m = seq 1 P U 1
26 25 fveq1d m = 1 seq 1 P U m t = seq 1 P U 1 t
27 fveq2 m = 1 seq 1 × F t m = seq 1 × F t 1
28 26 27 eqeq12d m = 1 seq 1 P U m t = seq 1 × F t m seq 1 P U 1 t = seq 1 × F t 1
29 24 28 imbi12d m = 1 φ t T m 1 M seq 1 P U m t = seq 1 × F t m φ t T 1 1 M seq 1 P U 1 t = seq 1 × F t 1
30 eleq1 m = n m 1 M n 1 M
31 30 3anbi3d m = n φ t T m 1 M φ t T n 1 M
32 fveq2 m = n seq 1 P U m = seq 1 P U n
33 32 fveq1d m = n seq 1 P U m t = seq 1 P U n t
34 fveq2 m = n seq 1 × F t m = seq 1 × F t n
35 33 34 eqeq12d m = n seq 1 P U m t = seq 1 × F t m seq 1 P U n t = seq 1 × F t n
36 31 35 imbi12d m = n φ t T m 1 M seq 1 P U m t = seq 1 × F t m φ t T n 1 M seq 1 P U n t = seq 1 × F t n
37 eleq1 m = n + 1 m 1 M n + 1 1 M
38 37 3anbi3d m = n + 1 φ t T m 1 M φ t T n + 1 1 M
39 fveq2 m = n + 1 seq 1 P U m = seq 1 P U n + 1
40 39 fveq1d m = n + 1 seq 1 P U m t = seq 1 P U n + 1 t
41 fveq2 m = n + 1 seq 1 × F t m = seq 1 × F t n + 1
42 40 41 eqeq12d m = n + 1 seq 1 P U m t = seq 1 × F t m seq 1 P U n + 1 t = seq 1 × F t n + 1
43 38 42 imbi12d m = n + 1 φ t T m 1 M seq 1 P U m t = seq 1 × F t m φ t T n + 1 1 M seq 1 P U n + 1 t = seq 1 × F t n + 1
44 eleq1 m = M m 1 M M 1 M
45 44 3anbi3d m = M φ t T m 1 M φ t T M 1 M
46 fveq2 m = M seq 1 P U m = seq 1 P U M
47 46 fveq1d m = M seq 1 P U m t = seq 1 P U M t
48 fveq2 m = M seq 1 × F t m = seq 1 × F t M
49 47 48 eqeq12d m = M seq 1 P U m t = seq 1 × F t m seq 1 P U M t = seq 1 × F t M
50 45 49 imbi12d m = M φ t T m 1 M seq 1 P U m t = seq 1 × F t m φ t T M 1 M seq 1 P U M t = seq 1 × F t M
51 1z 1
52 seq1 1 seq 1 × F t 1 = F t 1
53 51 52 ax-mp seq 1 × F t 1 = F t 1
54 1zzd φ 1
55 1le1 1 1
56 55 a1i φ 1 1
57 54 13 54 56 15 elfzd φ 1 1 M
58 nfv i t T
59 nfcv _ i T
60 nfmpt1 _ i i 1 M U i t
61 59 60 nfmpt _ i t T i 1 M U i t
62 5 61 nfcxfr _ i F
63 nfcv _ i t
64 62 63 nffv _ i F t
65 nfcv _ i 1
66 64 65 nffv _ i F t 1
67 nffvmpt1 _ i i 1 M U i t 1
68 66 67 nfeq i F t 1 = i 1 M U i t 1
69 58 68 nfim i t T F t 1 = i 1 M U i t 1
70 fveq2 i = 1 F t i = F t 1
71 fveq2 i = 1 i 1 M U i t i = i 1 M U i t 1
72 70 71 eqeq12d i = 1 F t i = i 1 M U i t i F t 1 = i 1 M U i t 1
73 72 imbi2d i = 1 t T F t i = i 1 M U i t i t T F t 1 = i 1 M U i t 1
74 ovex 1 M V
75 74 mptex i 1 M U i t V
76 5 fvmpt2 t T i 1 M U i t V F t = i 1 M U i t
77 75 76 mpan2 t T F t = i 1 M U i t
78 77 fveq1d t T F t i = i 1 M U i t i
79 69 73 78 vtoclg1f 1 1 M t T F t 1 = i 1 M U i t 1
80 57 79 syl φ t T F t 1 = i 1 M U i t 1
81 80 imp φ t T F t 1 = i 1 M U i t 1
82 eqid i 1 M U i t = i 1 M U i t
83 fveq2 i = 1 U i = U 1
84 83 fveq1d i = 1 U i t = U 1 t
85 57 adantr φ t T 1 1 M
86 9 57 ffvelrnd φ U 1 Y
87 86 ancli φ φ U 1 Y
88 eleq1 f = U 1 f Y U 1 Y
89 88 anbi2d f = U 1 φ f Y φ U 1 Y
90 feq1 f = U 1 f : T U 1 : T
91 89 90 imbi12d f = U 1 φ f Y f : T φ U 1 Y U 1 : T
92 10 a1i f Y φ f Y f : T
93 91 92 vtoclga U 1 Y φ U 1 Y U 1 : T
94 86 87 93 sylc φ U 1 : T
95 94 ffvelrnda φ t T U 1 t
96 82 84 85 95 fvmptd3 φ t T i 1 M U i t 1 = U 1 t
97 81 96 eqtrd φ t T F t 1 = U 1 t
98 seq1 1 seq 1 P U 1 = U 1
99 51 98 ax-mp seq 1 P U 1 = U 1
100 99 fveq1i seq 1 P U 1 t = U 1 t
101 97 100 eqtr4di φ t T F t 1 = seq 1 P U 1 t
102 53 101 eqtr2id φ t T seq 1 P U 1 t = seq 1 × F t 1
103 102 3adant3 φ t T 1 1 M seq 1 P U 1 t = seq 1 × F t 1
104 simp31 n φ t T n 1 M seq 1 P U n t = seq 1 × F t n φ t T n + 1 1 M φ
105 simp1 n φ t T n 1 M seq 1 P U n t = seq 1 × F t n φ t T n + 1 1 M n
106 simp33 n φ t T n 1 M seq 1 P U n t = seq 1 × F t n φ t T n + 1 1 M n + 1 1 M
107 105 106 jca n φ t T n 1 M seq 1 P U n t = seq 1 × F t n φ t T n + 1 1 M n n + 1 1 M
108 elnnuz n n 1
109 108 biimpi n n 1
110 109 anim1i n n + 1 1 M n 1 n + 1 1 M
111 peano2fzr n 1 n + 1 1 M n 1 M
112 107 110 111 3syl n φ t T n 1 M seq 1 P U n t = seq 1 × F t n φ t T n + 1 1 M n 1 M
113 simp32 n φ t T n 1 M seq 1 P U n t = seq 1 × F t n φ t T n + 1 1 M t T
114 simp2 n φ t T n 1 M seq 1 P U n t = seq 1 × F t n φ t T n + 1 1 M φ t T n 1 M seq 1 P U n t = seq 1 × F t n
115 104 113 112 114 mp3and n φ t T n 1 M seq 1 P U n t = seq 1 × F t n φ t T n + 1 1 M seq 1 P U n t = seq 1 × F t n
116 112 106 115 3jca n φ t T n 1 M seq 1 P U n t = seq 1 × F t n φ t T n + 1 1 M n 1 M n + 1 1 M seq 1 P U n t = seq 1 × F t n
117 nfv f φ
118 nfv f n 1 M
119 nfv f n + 1 1 M
120 nfcv _ f 1
121 nfmpo1 _ f f Y , g Y t T f t g t
122 3 121 nfcxfr _ f P
123 nfcv _ f U
124 120 122 123 nfseq _ f seq 1 P U
125 nfcv _ f n
126 124 125 nffv _ f seq 1 P U n
127 nfcv _ f t
128 126 127 nffv _ f seq 1 P U n t
129 nfcv _ f seq 1 × F t n
130 128 129 nfeq f seq 1 P U n t = seq 1 × F t n
131 118 119 130 nf3an f n 1 M n + 1 1 M seq 1 P U n t = seq 1 × F t n
132 117 131 nfan f φ n 1 M n + 1 1 M seq 1 P U n t = seq 1 × F t n
133 nfv g φ
134 nfv g n 1 M
135 nfv g n + 1 1 M
136 nfcv _ g 1
137 nfmpo2 _ g f Y , g Y t T f t g t
138 3 137 nfcxfr _ g P
139 nfcv _ g U
140 136 138 139 nfseq _ g seq 1 P U
141 nfcv _ g n
142 140 141 nffv _ g seq 1 P U n
143 nfcv _ g t
144 142 143 nffv _ g seq 1 P U n t
145 nfcv _ g seq 1 × F t n
146 144 145 nfeq g seq 1 P U n t = seq 1 × F t n
147 134 135 146 nf3an g n 1 M n + 1 1 M seq 1 P U n t = seq 1 × F t n
148 133 147 nfan g φ n 1 M n + 1 1 M seq 1 P U n t = seq 1 × F t n
149 7 adantr φ n 1 M n + 1 1 M seq 1 P U n t = seq 1 × F t n T V
150 9 adantr φ n 1 M n + 1 1 M seq 1 P U n t = seq 1 × F t n U : 1 M Y
151 11 3adant1r φ n 1 M n + 1 1 M seq 1 P U n t = seq 1 × F t n f Y g Y t T f t g t Y
152 simpr1 φ n 1 M n + 1 1 M seq 1 P U n t = seq 1 × F t n n 1 M
153 simpr2 φ n 1 M n + 1 1 M seq 1 P U n t = seq 1 × F t n n + 1 1 M
154 simpr3 φ n 1 M n + 1 1 M seq 1 P U n t = seq 1 × F t n seq 1 P U n t = seq 1 × F t n
155 10 adantlr φ n 1 M n + 1 1 M seq 1 P U n t = seq 1 × F t n f Y f : T
156 132 148 2 3 5 149 150 151 152 153 154 155 fmuldfeqlem1 φ n 1 M n + 1 1 M seq 1 P U n t = seq 1 × F t n t T seq 1 P U n + 1 t = seq 1 × F t n + 1
157 104 116 113 156 syl21anc n φ t T n 1 M seq 1 P U n t = seq 1 × F t n φ t T n + 1 1 M seq 1 P U n + 1 t = seq 1 × F t n + 1
158 157 3exp n φ t T n 1 M seq 1 P U n t = seq 1 × F t n φ t T n + 1 1 M seq 1 P U n + 1 t = seq 1 × F t n + 1
159 29 36 43 50 103 158 nnind M φ t T M 1 M seq 1 P U M t = seq 1 × F t M
160 22 159 mpcom φ t T M 1 M seq 1 P U M t = seq 1 × F t M
161 21 160 mpd3an3 φ t T seq 1 P U M t = seq 1 × F t M
162 4 fveq1i X t = seq 1 P U M t
163 162 a1i φ t T X t = seq 1 P U M t
164 simpr φ t T t T
165 elnnuz M M 1
166 8 165 sylib φ M 1
167 166 adantr φ t T M 1
168 1 58 nfan i φ t T
169 nfv i k 1 M
170 168 169 nfan i φ t T k 1 M
171 nfcv _ i k
172 64 171 nffv _ i F t k
173 172 nfel1 i F t k
174 170 173 nfim i φ t T k 1 M F t k
175 eleq1 i = k i 1 M k 1 M
176 175 anbi2d i = k φ t T i 1 M φ t T k 1 M
177 fveq2 i = k F t i = F t k
178 177 eleq1d i = k F t i F t k
179 176 178 imbi12d i = k φ t T i 1 M F t i φ t T k 1 M F t k
180 78 ad2antlr φ t T i 1 M F t i = i 1 M U i t i
181 simpr φ t T i 1 M i 1 M
182 9 ffvelrnda φ i 1 M U i Y
183 simpl φ i 1 M φ
184 183 182 jca φ i 1 M φ U i Y
185 eleq1 f = U i f Y U i Y
186 185 anbi2d f = U i φ f Y φ U i Y
187 feq1 f = U i f : T U i : T
188 186 187 imbi12d f = U i φ f Y f : T φ U i Y U i : T
189 188 92 vtoclga U i Y φ U i Y U i : T
190 182 184 189 sylc φ i 1 M U i : T
191 190 adantlr φ t T i 1 M U i : T
192 simplr φ t T i 1 M t T
193 191 192 ffvelrnd φ t T i 1 M U i t
194 82 fvmpt2 i 1 M U i t i 1 M U i t i = U i t
195 181 193 194 syl2anc φ t T i 1 M i 1 M U i t i = U i t
196 195 193 eqeltrd φ t T i 1 M i 1 M U i t i
197 180 196 eqeltrd φ t T i 1 M F t i
198 174 179 197 chvarfv φ t T k 1 M F t k
199 remulcl k b k b
200 199 adantl φ t T k b k b
201 167 198 200 seqcl φ t T seq 1 × F t M
202 6 fvmpt2 t T seq 1 × F t M Z t = seq 1 × F t M
203 164 201 202 syl2anc φ t T Z t = seq 1 × F t M
204 161 163 203 3eqtr4d φ t T X t = Z t