Metamath Proof Explorer


Theorem fmuldfeqlem1

Description: induction step for the proof of fmuldfeq . (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fmuldfeqlem1.1 f φ
fmuldfeqlem1.2 g φ
fmuldfeqlem1.3 _ t Y
fmuldfeqlem1.5 P = f Y , g Y t T f t g t
fmuldfeqlem1.6 F = t T i 1 M U i t
fmuldfeqlem1.7 φ T V
fmuldfeqlem1.8 φ U : 1 M Y
fmuldfeqlem1.9 φ f Y g Y t T f t g t Y
fmuldfeqlem1.10 φ N 1 M
fmuldfeqlem1.11 φ N + 1 1 M
fmuldfeqlem1.12 φ seq 1 P U N t = seq 1 × F t N
fmuldfeqlem1.13 φ f Y f : T
Assertion fmuldfeqlem1 φ t T seq 1 P U N + 1 t = seq 1 × F t N + 1

Proof

Step Hyp Ref Expression
1 fmuldfeqlem1.1 f φ
2 fmuldfeqlem1.2 g φ
3 fmuldfeqlem1.3 _ t Y
4 fmuldfeqlem1.5 P = f Y , g Y t T f t g t
5 fmuldfeqlem1.6 F = t T i 1 M U i t
6 fmuldfeqlem1.7 φ T V
7 fmuldfeqlem1.8 φ U : 1 M Y
8 fmuldfeqlem1.9 φ f Y g Y t T f t g t Y
9 fmuldfeqlem1.10 φ N 1 M
10 fmuldfeqlem1.11 φ N + 1 1 M
11 fmuldfeqlem1.12 φ seq 1 P U N t = seq 1 × F t N
12 fmuldfeqlem1.13 φ f Y f : T
13 ovex 1 M V
14 13 mptex i 1 M U i t V
15 5 fvmpt2 t T i 1 M U i t V F t = i 1 M U i t
16 14 15 mpan2 t T F t = i 1 M U i t
17 fveq2 i = j U i = U j
18 17 fveq1d i = j U i t = U j t
19 18 cbvmptv i 1 M U i t = j 1 M U j t
20 16 19 eqtrdi t T F t = j 1 M U j t
21 20 adantl φ t T F t = j 1 M U j t
22 fveq2 j = N + 1 U j = U N + 1
23 22 fveq1d j = N + 1 U j t = U N + 1 t
24 23 adantl φ t T j = N + 1 U j t = U N + 1 t
25 10 adantr φ t T N + 1 1 M
26 7 10 ffvelrnd φ U N + 1 Y
27 26 ancli φ φ U N + 1 Y
28 nfcv _ f U N + 1
29 nfv f U N + 1 Y
30 1 29 nfan f φ U N + 1 Y
31 nfv f U N + 1 : T
32 30 31 nfim f φ U N + 1 Y U N + 1 : T
33 eleq1 f = U N + 1 f Y U N + 1 Y
34 33 anbi2d f = U N + 1 φ f Y φ U N + 1 Y
35 feq1 f = U N + 1 f : T U N + 1 : T
36 34 35 imbi12d f = U N + 1 φ f Y f : T φ U N + 1 Y U N + 1 : T
37 28 32 36 12 vtoclgf U N + 1 Y φ U N + 1 Y U N + 1 : T
38 26 27 37 sylc φ U N + 1 : T
39 38 ffvelrnda φ t T U N + 1 t
40 21 24 25 39 fvmptd φ t T F t N + 1 = U N + 1 t
41 40 oveq2d φ t T seq 1 × F t N F t N + 1 = seq 1 × F t N U N + 1 t
42 elfzuz N 1 M N 1
43 9 42 syl φ N 1
44 seqp1 N 1 seq 1 × F t N + 1 = seq 1 × F t N F t N + 1
45 43 44 syl φ seq 1 × F t N + 1 = seq 1 × F t N F t N + 1
46 45 adantr φ t T seq 1 × F t N + 1 = seq 1 × F t N F t N + 1
47 seqp1 N 1 seq 1 P U N + 1 = seq 1 P U N P U N + 1
48 43 47 syl φ seq 1 P U N + 1 = seq 1 P U N P U N + 1
49 nfcv _ h t T f t g t
50 nfcv _ l t T f t g t
51 nfcv _ f t T h t l t
52 nfcv _ g t T h t l t
53 fveq1 f = h f t = h t
54 fveq1 g = l g t = l t
55 53 54 oveqan12d f = h g = l f t g t = h t l t
56 55 mpteq2dv f = h g = l t T f t g t = t T h t l t
57 49 50 51 52 56 cbvmpo f Y , g Y t T f t g t = h Y , l Y t T h t l t
58 4 57 eqtri P = h Y , l Y t T h t l t
59 58 a1i φ P = h Y , l Y t T h t l t
60 nfcv _ t 1
61 nfmpt1 _ t t T f t g t
62 3 3 61 nfmpo _ t f Y , g Y t T f t g t
63 4 62 nfcxfr _ t P
64 nfcv _ t U
65 60 63 64 nfseq _ t seq 1 P U
66 nfcv _ t N
67 65 66 nffv _ t seq 1 P U N
68 67 nfeq2 t h = seq 1 P U N
69 nfv t l = U N + 1
70 68 69 nfan t h = seq 1 P U N l = U N + 1
71 fveq1 h = seq 1 P U N h t = seq 1 P U N t
72 71 ad2antrr h = seq 1 P U N l = U N + 1 t T h t = seq 1 P U N t
73 fveq1 l = U N + 1 l t = U N + 1 t
74 73 ad2antlr h = seq 1 P U N l = U N + 1 t T l t = U N + 1 t
75 72 74 oveq12d h = seq 1 P U N l = U N + 1 t T h t l t = seq 1 P U N t U N + 1 t
76 70 75 mpteq2da h = seq 1 P U N l = U N + 1 t T h t l t = t T seq 1 P U N t U N + 1 t
77 76 adantl φ h = seq 1 P U N l = U N + 1 t T h t l t = t T seq 1 P U N t U N + 1 t
78 eqid seq 1 P U N = seq 1 P U N
79 3simpc φ h Y l Y h Y l Y
80 nfcv _ f h
81 nfcv _ g h
82 nfcv _ g l
83 nfv f h Y
84 nfv f g Y
85 1 83 84 nf3an f φ h Y g Y
86 nfv f t T h t g t Y
87 85 86 nfim f φ h Y g Y t T h t g t Y
88 nfv g h Y
89 nfv g l Y
90 2 88 89 nf3an g φ h Y l Y
91 nfv g t T h t l t Y
92 90 91 nfim g φ h Y l Y t T h t l t Y
93 eleq1 f = h f Y h Y
94 93 3anbi2d f = h φ f Y g Y φ h Y g Y
95 53 oveq1d f = h f t g t = h t g t
96 95 mpteq2dv f = h t T f t g t = t T h t g t
97 96 eleq1d f = h t T f t g t Y t T h t g t Y
98 94 97 imbi12d f = h φ f Y g Y t T f t g t Y φ h Y g Y t T h t g t Y
99 eleq1 g = l g Y l Y
100 99 3anbi3d g = l φ h Y g Y φ h Y l Y
101 54 oveq2d g = l h t g t = h t l t
102 101 mpteq2dv g = l t T h t g t = t T h t l t
103 102 eleq1d g = l t T h t g t Y t T h t l t Y
104 100 103 imbi12d g = l φ h Y g Y t T h t g t Y φ h Y l Y t T h t l t Y
105 80 81 82 87 92 98 104 8 vtocl2gf h Y l Y φ h Y l Y t T h t l t Y
106 79 105 mpcom φ h Y l Y t T h t l t Y
107 58 78 9 7 106 6 fmulcl φ seq 1 P U N Y
108 mptexg T V t T seq 1 P U N t U N + 1 t V
109 6 108 syl φ t T seq 1 P U N t U N + 1 t V
110 59 77 107 26 109 ovmpod φ seq 1 P U N P U N + 1 = t T seq 1 P U N t U N + 1 t
111 48 110 eqtrd φ seq 1 P U N + 1 = t T seq 1 P U N t U N + 1 t
112 107 ancli φ φ seq 1 P U N Y
113 nfcv _ f 1
114 nfmpo1 _ f f Y , g Y t T f t g t
115 4 114 nfcxfr _ f P
116 nfcv _ f U
117 113 115 116 nfseq _ f seq 1 P U
118 nfcv _ f N
119 117 118 nffv _ f seq 1 P U N
120 119 nfel1 f seq 1 P U N Y
121 1 120 nfan f φ seq 1 P U N Y
122 nfcv _ f T
123 nfcv _ f
124 119 122 123 nff f seq 1 P U N : T
125 121 124 nfim f φ seq 1 P U N Y seq 1 P U N : T
126 eleq1 f = seq 1 P U N f Y seq 1 P U N Y
127 126 anbi2d f = seq 1 P U N φ f Y φ seq 1 P U N Y
128 feq1 f = seq 1 P U N f : T seq 1 P U N : T
129 127 128 imbi12d f = seq 1 P U N φ f Y f : T φ seq 1 P U N Y seq 1 P U N : T
130 119 125 129 12 vtoclgf seq 1 P U N Y φ seq 1 P U N Y seq 1 P U N : T
131 107 112 130 sylc φ seq 1 P U N : T
132 131 ffvelrnda φ t T seq 1 P U N t
133 132 39 remulcld φ t T seq 1 P U N t U N + 1 t
134 111 133 fvmpt2d φ t T seq 1 P U N + 1 t = seq 1 P U N t U N + 1 t
135 11 oveq1d φ seq 1 P U N t U N + 1 t = seq 1 × F t N U N + 1 t
136 135 adantr φ t T seq 1 P U N t U N + 1 t = seq 1 × F t N U N + 1 t
137 134 136 eqtrd φ t T seq 1 P U N + 1 t = seq 1 × F t N U N + 1 t
138 41 46 137 3eqtr4rd φ t T seq 1 P U N + 1 t = seq 1 × F t N + 1