Metamath Proof Explorer


Theorem fncpn

Description: The C^n object is a function. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion fncpn S C n S Fn 0

Proof

Step Hyp Ref Expression
1 ovex 𝑝𝑚 S V
2 1 rabex f 𝑝𝑚 S | S D n f n : dom f cn V
3 eqid n 0 f 𝑝𝑚 S | S D n f n : dom f cn = n 0 f 𝑝𝑚 S | S D n f n : dom f cn
4 2 3 fnmpti n 0 f 𝑝𝑚 S | S D n f n : dom f cn Fn 0
5 cpnfval S C n S = n 0 f 𝑝𝑚 S | S D n f n : dom f cn
6 5 fneq1d S C n S Fn 0 n 0 f 𝑝𝑚 S | S D n f n : dom f cn Fn 0
7 4 6 mpbiri S C n S Fn 0