Metamath Proof Explorer


Theorem fndmexd

Description: If a function is a set, its domain is a set. (Contributed by Rohan Ridenour, 13-May-2024)

Ref Expression
Hypotheses fndmexd.1 φ F V
fndmexd.2 φ F Fn D
Assertion fndmexd φ D V

Proof

Step Hyp Ref Expression
1 fndmexd.1 φ F V
2 fndmexd.2 φ F Fn D
3 2 fndmd φ dom F = D
4 1 dmexd φ dom F V
5 3 4 eqeltrrd φ D V