Metamath Proof Explorer


Theorem fnelfp

Description: Property of a fixed point of a function. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion fnelfp FFnAXAXdomFIFX=X

Proof

Step Hyp Ref Expression
1 fninfp FFnAdomFI=xA|Fx=x
2 1 eleq2d FFnAXdomFIXxA|Fx=x
3 fveq2 x=XFx=FX
4 id x=Xx=X
5 3 4 eqeq12d x=XFx=xFX=X
6 5 elrab3 XAXxA|Fx=xFX=X
7 2 6 sylan9bb FFnAXAXdomFIFX=X