Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fnelfp
Next ⟩
fndifnfp
Metamath Proof Explorer
Ascii
Unicode
Theorem
fnelfp
Description:
Property of a fixed point of a function.
(Contributed by
Stefan O'Rear
, 1-Feb-2015)
Ref
Expression
Assertion
fnelfp
⊢
F
Fn
A
∧
X
∈
A
→
X
∈
dom
⁡
F
∩
I
↔
F
⁡
X
=
X
Proof
Step
Hyp
Ref
Expression
1
fninfp
⊢
F
Fn
A
→
dom
⁡
F
∩
I
=
x
∈
A
|
F
⁡
x
=
x
2
1
eleq2d
⊢
F
Fn
A
→
X
∈
dom
⁡
F
∩
I
↔
X
∈
x
∈
A
|
F
⁡
x
=
x
3
fveq2
⊢
x
=
X
→
F
⁡
x
=
F
⁡
X
4
id
⊢
x
=
X
→
x
=
X
5
3
4
eqeq12d
⊢
x
=
X
→
F
⁡
x
=
x
↔
F
⁡
X
=
X
6
5
elrab3
⊢
X
∈
A
→
X
∈
x
∈
A
|
F
⁡
x
=
x
↔
F
⁡
X
=
X
7
2
6
sylan9bb
⊢
F
Fn
A
∧
X
∈
A
→
X
∈
dom
⁡
F
∩
I
↔
F
⁡
X
=
X