Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fneq2
Next ⟩
fneq1d
Metamath Proof Explorer
Ascii
Unicode
Theorem
fneq2
Description:
Equality theorem for function predicate with domain.
(Contributed by
NM
, 1-Aug-1994)
Ref
Expression
Assertion
fneq2
⊢
A
=
B
→
F
Fn
A
↔
F
Fn
B
Proof
Step
Hyp
Ref
Expression
1
eqeq2
⊢
A
=
B
→
dom
⁡
F
=
A
↔
dom
⁡
F
=
B
2
1
anbi2d
⊢
A
=
B
→
Fun
⁡
F
∧
dom
⁡
F
=
A
↔
Fun
⁡
F
∧
dom
⁡
F
=
B
3
df-fn
⊢
F
Fn
A
↔
Fun
⁡
F
∧
dom
⁡
F
=
A
4
df-fn
⊢
F
Fn
B
↔
Fun
⁡
F
∧
dom
⁡
F
=
B
5
2
3
4
3bitr4g
⊢
A
=
B
→
F
Fn
A
↔
F
Fn
B