Metamath Proof Explorer


Theorem fneu2

Description: There is exactly one value of a function. (Contributed by NM, 7-Nov-1995)

Ref Expression
Assertion fneu2 F Fn A B A ∃! y B y F

Proof

Step Hyp Ref Expression
1 fneu F Fn A B A ∃! y B F y
2 df-br B F y B y F
3 2 eubii ∃! y B F y ∃! y B y F
4 1 3 sylib F Fn A B A ∃! y B y F