Metamath Proof Explorer


Theorem fnfuc

Description: The FuncCat operation is a well-defined function on categories. (Contributed by Mario Carneiro, 12-Jan-2017)

Ref Expression
Assertion fnfuc FuncCat Fn Cat × Cat

Proof

Step Hyp Ref Expression
1 df-fuc FuncCat = t Cat , u Cat Base ndx t Func u Hom ndx t Nat u comp ndx v t Func u × t Func u , h t Func u 1 st v / f 2 nd v / g b g t Nat u h , a f t Nat u g x Base t b x 1 st f x 1 st g x comp u 1 st h x a x
2 tpex Base ndx t Func u Hom ndx t Nat u comp ndx v t Func u × t Func u , h t Func u 1 st v / f 2 nd v / g b g t Nat u h , a f t Nat u g x Base t b x 1 st f x 1 st g x comp u 1 st h x a x V
3 1 2 fnmpoi FuncCat Fn Cat × Cat