Metamath Proof Explorer


Theorem fnfvimad

Description: A function's value belongs to the image. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fnfvimad.1 φ F Fn A
fnfvimad.2 φ B A
fnfvimad.3 φ B C
Assertion fnfvimad φ F B F C

Proof

Step Hyp Ref Expression
1 fnfvimad.1 φ F Fn A
2 fnfvimad.2 φ B A
3 fnfvimad.3 φ B C
4 inss2 A C C
5 imass2 A C C F A C F C
6 4 5 ax-mp F A C F C
7 inss1 A C A
8 7 a1i φ A C A
9 2 3 elind φ B A C
10 fnfvima F Fn A A C A B A C F B F A C
11 1 8 9 10 syl3anc φ F B F A C
12 6 11 sselid φ F B F C