Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fnfvrnss
Next ⟩
frnssb
Metamath Proof Explorer
Ascii
Unicode
Theorem
fnfvrnss
Description:
An upper bound for range determined by function values.
(Contributed by
NM
, 8-Oct-2004)
Ref
Expression
Assertion
fnfvrnss
⊢
F
Fn
A
∧
∀
x
∈
A
F
⁡
x
∈
B
→
ran
⁡
F
⊆
B
Proof
Step
Hyp
Ref
Expression
1
ffnfv
⊢
F
:
A
⟶
B
↔
F
Fn
A
∧
∀
x
∈
A
F
⁡
x
∈
B
2
frn
⊢
F
:
A
⟶
B
→
ran
⁡
F
⊆
B
3
1
2
sylbir
⊢
F
Fn
A
∧
∀
x
∈
A
F
⁡
x
∈
B
→
ran
⁡
F
⊆
B