Metamath Proof Explorer


Theorem fnfzo0hash

Description: The size of a function on a half-open range of nonnegative integers equals the upper bound of this range. (Contributed by Alexander van der Vekens, 26-Jan-2018) (Proof shortened by AV, 11-Apr-2021)

Ref Expression
Assertion fnfzo0hash N 0 F : 0 ..^ N B F = N

Proof

Step Hyp Ref Expression
1 ffn F : 0 ..^ N B F Fn 0 ..^ N
2 ffzo0hash N 0 F Fn 0 ..^ N F = N
3 1 2 sylan2 N 0 F : 0 ..^ N B F = N