Metamath Proof Explorer


Theorem fnfzo0hashnn0

Description: The value of the size function on a half-open range of nonnegative integers is a nonnegative integer. (Contributed by AV, 10-Apr-2021)

Ref Expression
Assertion fnfzo0hashnn0 F Fn 0 ..^ N F 0

Proof

Step Hyp Ref Expression
1 hashfn F Fn 0 ..^ N F = 0 ..^ N
2 fzofi 0 ..^ N Fin
3 hashcl 0 ..^ N Fin 0 ..^ N 0
4 2 3 ax-mp 0 ..^ N 0
5 1 4 eqeltrdi F Fn 0 ..^ N F 0