Metamath Proof Explorer


Theorem fnimaeq0

Description: Images under a function never map nonempty sets to empty sets. EDITORIAL: usable in fnwe2lem2 . (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Assertion fnimaeq0 F Fn A B A F B = B =

Proof

Step Hyp Ref Expression
1 imadisj F B = dom F B =
2 incom dom F B = B dom F
3 fndm F Fn A dom F = A
4 3 sseq2d F Fn A B dom F B A
5 4 biimpar F Fn A B A B dom F
6 df-ss B dom F B dom F = B
7 5 6 sylib F Fn A B A B dom F = B
8 2 7 eqtrid F Fn A B A dom F B = B
9 8 eqeq1d F Fn A B A dom F B = B =
10 1 9 syl5bb F Fn A B A F B = B =