Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fnimapr
Next ⟩
ssimaex
Metamath Proof Explorer
Ascii
Unicode
Theorem
fnimapr
Description:
The image of a pair under a function.
(Contributed by
Jeff Madsen
, 6-Jan-2011)
Ref
Expression
Assertion
fnimapr
⊢
F
Fn
A
∧
B
∈
A
∧
C
∈
A
→
F
B
C
=
F
⁡
B
F
⁡
C
Proof
Step
Hyp
Ref
Expression
1
fnsnfv
⊢
F
Fn
A
∧
B
∈
A
→
F
⁡
B
=
F
B
2
1
3adant3
⊢
F
Fn
A
∧
B
∈
A
∧
C
∈
A
→
F
⁡
B
=
F
B
3
fnsnfv
⊢
F
Fn
A
∧
C
∈
A
→
F
⁡
C
=
F
C
4
3
3adant2
⊢
F
Fn
A
∧
B
∈
A
∧
C
∈
A
→
F
⁡
C
=
F
C
5
2
4
uneq12d
⊢
F
Fn
A
∧
B
∈
A
∧
C
∈
A
→
F
⁡
B
∪
F
⁡
C
=
F
B
∪
F
C
6
5
eqcomd
⊢
F
Fn
A
∧
B
∈
A
∧
C
∈
A
→
F
B
∪
F
C
=
F
⁡
B
∪
F
⁡
C
7
df-pr
⊢
B
C
=
B
∪
C
8
7
imaeq2i
⊢
F
B
C
=
F
B
∪
C
9
imaundi
⊢
F
B
∪
C
=
F
B
∪
F
C
10
8
9
eqtri
⊢
F
B
C
=
F
B
∪
F
C
11
df-pr
⊢
F
⁡
B
F
⁡
C
=
F
⁡
B
∪
F
⁡
C
12
6
10
11
3eqtr4g
⊢
F
Fn
A
∧
B
∈
A
∧
C
∈
A
→
F
B
C
=
F
⁡
B
F
⁡
C