Metamath Proof Explorer


Theorem fnlimcnv

Description: The sequence of function values converges to the value of the limit function G at any point of its domain D . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fnlimcnv.1 _ x F
fnlimcnv.2 D = x n Z m n dom F m | m Z F m x dom
fnlimcnv.3 G = x D m Z F m x
fnlimcnv.4 φ X D
Assertion fnlimcnv φ m Z F m X G X

Proof

Step Hyp Ref Expression
1 fnlimcnv.1 _ x F
2 fnlimcnv.2 D = x n Z m n dom F m | m Z F m x dom
3 fnlimcnv.3 G = x D m Z F m x
4 fnlimcnv.4 φ X D
5 fveq2 y = X F m y = F m X
6 5 mpteq2dv y = X m Z F m y = m Z F m X
7 6 eleq1d y = X m Z F m y dom m Z F m X dom
8 nfcv _ x Z
9 nfcv _ x n
10 nfcv _ x m
11 1 10 nffv _ x F m
12 11 nfdm _ x dom F m
13 9 12 nfiin _ x m n dom F m
14 8 13 nfiun _ x n Z m n dom F m
15 nfcv _ y n Z m n dom F m
16 nfv y m Z F m x dom
17 nfcv _ x y
18 11 17 nffv _ x F m y
19 8 18 nfmpt _ x m Z F m y
20 nfcv _ x dom
21 19 20 nfel x m Z F m y dom
22 fveq2 x = y F m x = F m y
23 22 mpteq2dv x = y m Z F m x = m Z F m y
24 23 eleq1d x = y m Z F m x dom m Z F m y dom
25 14 15 16 21 24 cbvrabw x n Z m n dom F m | m Z F m x dom = y n Z m n dom F m | m Z F m y dom
26 2 25 eqtri D = y n Z m n dom F m | m Z F m y dom
27 7 26 elrab2 X D X n Z m n dom F m m Z F m X dom
28 4 27 sylib φ X n Z m n dom F m m Z F m X dom
29 28 simprd φ m Z F m X dom
30 climdm m Z F m X dom m Z F m X m Z F m X
31 29 30 sylib φ m Z F m X m Z F m X
32 nfrab1 _ x x n Z m n dom F m | m Z F m x dom
33 2 32 nfcxfr _ x D
34 33 1 3 4 fnlimfv φ G X = m Z F m X
35 34 eqcomd φ m Z F m X = G X
36 31 35 breqtrd φ m Z F m X G X