Metamath Proof Explorer


Theorem fnlimf

Description: The limit function of real functions, is a real-valued function. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fnlimf.p m φ
fnlimf.m _ m F
fnlimf.n _ x F
fnlimf.z Z = M
fnlimf.f φ m Z F m : dom F m
fnlimf.d D = x n Z m n dom F m | m Z F m x dom
fnlimf.g G = x D m Z F m x
Assertion fnlimf φ G : D

Proof

Step Hyp Ref Expression
1 fnlimf.p m φ
2 fnlimf.m _ m F
3 fnlimf.n _ x F
4 fnlimf.z Z = M
5 fnlimf.f φ m Z F m : dom F m
6 fnlimf.d D = x n Z m n dom F m | m Z F m x dom
7 fnlimf.g G = x D m Z F m x
8 nfv m z D
9 1 8 nfan m φ z D
10 5 adantlr φ z D m Z F m : dom F m
11 simpr φ z D z D
12 9 2 3 4 10 6 11 fnlimfvre φ z D m Z F m z
13 nfrab1 _ x x n Z m n dom F m | m Z F m x dom
14 6 13 nfcxfr _ x D
15 nfcv _ z D
16 nfcv _ z m Z F m x
17 nfcv _ x
18 nfcv _ x Z
19 nfcv _ x m
20 3 19 nffv _ x F m
21 nfcv _ x z
22 20 21 nffv _ x F m z
23 18 22 nfmpt _ x m Z F m z
24 17 23 nffv _ x m Z F m z
25 fveq2 x = z F m x = F m z
26 25 mpteq2dv x = z m Z F m x = m Z F m z
27 26 fveq2d x = z m Z F m x = m Z F m z
28 14 15 16 24 27 cbvmptf x D m Z F m x = z D m Z F m z
29 7 28 eqtri G = z D m Z F m z
30 12 29 fmptd φ G : D