Metamath Proof Explorer


Theorem fnlimfv

Description: The value of the limit function G at any point of its domain D . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fnlimfv.1 _ x D
fnlimfv.2 _ x F
fnlimfv.3 G = x D m Z F m x
fnlimfv.4 φ X D
Assertion fnlimfv φ G X = m Z F m X

Proof

Step Hyp Ref Expression
1 fnlimfv.1 _ x D
2 fnlimfv.2 _ x F
3 fnlimfv.3 G = x D m Z F m x
4 fnlimfv.4 φ X D
5 nfcv _ y D
6 nfcv _ y m Z F m x
7 nfcv _ x
8 nfcv _ x Z
9 nfcv _ x m
10 2 9 nffv _ x F m
11 nfcv _ x y
12 10 11 nffv _ x F m y
13 8 12 nfmpt _ x m Z F m y
14 7 13 nffv _ x m Z F m y
15 fveq2 x = y F m x = F m y
16 15 mpteq2dv x = y m Z F m x = m Z F m y
17 16 fveq2d x = y m Z F m x = m Z F m y
18 1 5 6 14 17 cbvmptf x D m Z F m x = y D m Z F m y
19 3 18 eqtri G = y D m Z F m y
20 fveq2 y = X F m y = F m X
21 20 mpteq2dv y = X m Z F m y = m Z F m X
22 21 fveq2d y = X m Z F m y = m Z F m X
23 fvexd φ m Z F m X V
24 19 22 4 23 fvmptd3 φ G X = m Z F m X