Metamath Proof Explorer


Theorem fnlimfvre

Description: The limit function of real functions, applied to elements in its domain, evaluates to Real values. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses fnlimfvre.p m φ
fnlimfvre.m _ m F
fnlimfvre.n _ x F
fnlimfvre.z Z = M
fnlimfvre.f φ m Z F m : dom F m
fnlimfvre.d D = x n Z m n dom F m | m Z F m x dom
fnlimfvre.x φ X D
Assertion fnlimfvre φ m Z F m X

Proof

Step Hyp Ref Expression
1 fnlimfvre.p m φ
2 fnlimfvre.m _ m F
3 fnlimfvre.n _ x F
4 fnlimfvre.z Z = M
5 fnlimfvre.f φ m Z F m : dom F m
6 fnlimfvre.d D = x n Z m n dom F m | m Z F m x dom
7 fnlimfvre.x φ X D
8 nfcv _ x Z
9 nfcv _ x n
10 nfcv _ x m
11 3 10 nffv _ x F m
12 11 nfdm _ x dom F m
13 9 12 nfiin _ x m n dom F m
14 8 13 nfiun _ x n Z m n dom F m
15 14 ssrab2f x n Z m n dom F m | m Z F m x dom n Z m n dom F m
16 6 15 eqsstri D n Z m n dom F m
17 16 sseli X D X n Z m n dom F m
18 eliun X n Z m n dom F m n Z X m n dom F m
19 17 18 sylib X D n Z X m n dom F m
20 7 19 syl φ n Z X m n dom F m
21 nfv n φ
22 nfv n m Z F m X
23 nfv m n Z
24 nfcv _ m X
25 nfii1 _ m m n dom F m
26 24 25 nfel m X m n dom F m
27 1 23 26 nf3an m φ n Z X m n dom F m
28 uzssz M
29 4 eleq2i n Z n M
30 29 biimpi n Z n M
31 28 30 sselid n Z n
32 31 3ad2ant2 φ n Z X m n dom F m n
33 eqid n = n
34 4 fvexi Z V
35 34 a1i φ n Z X m n dom F m Z V
36 4 uztrn2 n Z j n j Z
37 36 ssd n Z n Z
38 37 3ad2ant2 φ n Z X m n dom F m n Z
39 fvexd φ n Z X m n dom F m m Z F m X V
40 fvexd φ n Z X m n dom F m n V
41 ssidd φ n Z X m n dom F m n n
42 fvexd φ n Z X m n dom F m m n F m X V
43 eqidd φ n Z X m n dom F m m n F m X = F m X
44 27 32 33 35 38 39 40 41 42 43 climfveqmpt φ n Z X m n dom F m m Z F m X = m n F m X
45 6 eleq2i X D X x n Z m n dom F m | m Z F m x dom
46 45 biimpi X D X x n Z m n dom F m | m Z F m x dom
47 nfcv _ x X
48 11 47 nffv _ x F m X
49 8 48 nfmpt _ x m Z F m X
50 nfcv _ x dom
51 49 50 nfel x m Z F m X dom
52 fveq2 x = X F m x = F m X
53 52 mpteq2dv x = X m Z F m x = m Z F m X
54 53 eleq1d x = X m Z F m x dom m Z F m X dom
55 47 14 51 54 elrabf X x n Z m n dom F m | m Z F m x dom X n Z m n dom F m m Z F m X dom
56 55 biimpi X x n Z m n dom F m | m Z F m x dom X n Z m n dom F m m Z F m X dom
57 56 simprd X x n Z m n dom F m | m Z F m x dom m Z F m X dom
58 46 57 syl X D m Z F m X dom
59 58 adantr X D n Z m Z F m X dom
60 nfmpt1 _ m m Z F m x
61 nfcv _ m dom
62 60 61 nfel m m Z F m x dom
63 nfv m j Z
64 63 nfci _ m Z
65 64 25 nfiun _ m n Z m n dom F m
66 62 65 nfrabw _ m x n Z m n dom F m | m Z F m x dom
67 6 66 nfcxfr _ m D
68 24 67 nfel m X D
69 68 23 nfan m X D n Z
70 31 adantl X D n Z n
71 34 a1i X D n Z Z V
72 37 adantl X D n Z n Z
73 fvexd X D n Z m Z F m X V
74 fvexd X D n Z n V
75 ssidd X D n Z n n
76 fvexd X D n Z m n F m X V
77 eqidd X D n Z m n F m X = F m X
78 69 70 33 71 72 73 74 75 76 77 climeldmeqmpt X D n Z m Z F m X dom m n F m X dom
79 59 78 mpbid X D n Z m n F m X dom
80 climdm m n F m X dom m n F m X m n F m X
81 79 80 sylib X D n Z m n F m X m n F m X
82 7 81 sylan φ n Z m n F m X m n F m X
83 82 3adant3 φ n Z X m n dom F m m n F m X m n F m X
84 simpl1 φ n Z X m n dom F m j n φ
85 simpl2 φ n Z X m n dom F m j n n Z
86 nfcv _ j dom F m
87 nfcv _ m j
88 2 87 nffv _ m F j
89 88 nfdm _ m dom F j
90 fveq2 m = j F m = F j
91 90 dmeqd m = j dom F m = dom F j
92 86 89 91 cbviin m n dom F m = j n dom F j
93 92 eleq2i X m n dom F m X j n dom F j
94 93 biimpi X m n dom F m X j n dom F j
95 94 adantr X m n dom F m j n X j n dom F j
96 simpr X m n dom F m j n j n
97 eliinid X j n dom F j j n X dom F j
98 95 96 97 syl2anc X m n dom F m j n X dom F j
99 98 3ad2antl3 φ n Z X m n dom F m j n X dom F j
100 simpr φ n Z X m n dom F m j n j n
101 id j n j n
102 fvexd j n F j X V
103 88 24 nffv _ m F j X
104 90 fveq1d m = j F m X = F j X
105 eqid m n F m X = m n F m X
106 87 103 104 105 fvmptf j n F j X V m n F m X j = F j X
107 101 102 106 syl2anc j n m n F m X j = F j X
108 107 adantl φ n Z X dom F j j n m n F m X j = F j X
109 simpll φ n Z j n φ
110 36 adantll φ n Z j n j Z
111 1 63 nfan m φ j Z
112 nfcv _ m
113 88 89 112 nff m F j : dom F j
114 111 113 nfim m φ j Z F j : dom F j
115 eleq1w m = j m Z j Z
116 115 anbi2d m = j φ m Z φ j Z
117 90 91 feq12d m = j F m : dom F m F j : dom F j
118 116 117 imbi12d m = j φ m Z F m : dom F m φ j Z F j : dom F j
119 114 118 5 chvarfv φ j Z F j : dom F j
120 109 110 119 syl2anc φ n Z j n F j : dom F j
121 120 3adantl3 φ n Z X dom F j j n F j : dom F j
122 simpl3 φ n Z X dom F j j n X dom F j
123 121 122 ffvelrnd φ n Z X dom F j j n F j X
124 108 123 eqeltrd φ n Z X dom F j j n m n F m X j
125 84 85 99 100 124 syl31anc φ n Z X m n dom F m j n m n F m X j
126 33 32 83 125 climrecl φ n Z X m n dom F m m n F m X
127 44 126 eqeltrd φ n Z X m n dom F m m Z F m X
128 127 3exp φ n Z X m n dom F m m Z F m X
129 21 22 128 rexlimd φ n Z X m n dom F m m Z F m X
130 20 129 mpd φ m Z F m X