Step |
Hyp |
Ref |
Expression |
1 |
|
fnlimfvre.p |
|
2 |
|
fnlimfvre.m |
|
3 |
|
fnlimfvre.n |
|
4 |
|
fnlimfvre.z |
|
5 |
|
fnlimfvre.f |
|
6 |
|
fnlimfvre.d |
|
7 |
|
fnlimfvre.x |
|
8 |
|
nfcv |
|
9 |
|
nfcv |
|
10 |
|
nfcv |
|
11 |
3 10
|
nffv |
|
12 |
11
|
nfdm |
|
13 |
9 12
|
nfiin |
|
14 |
8 13
|
nfiun |
|
15 |
14
|
ssrab2f |
|
16 |
6 15
|
eqsstri |
|
17 |
16
|
sseli |
|
18 |
|
eliun |
|
19 |
17 18
|
sylib |
|
20 |
7 19
|
syl |
|
21 |
|
nfv |
|
22 |
|
nfv |
|
23 |
|
nfv |
|
24 |
|
nfcv |
|
25 |
|
nfii1 |
|
26 |
24 25
|
nfel |
|
27 |
1 23 26
|
nf3an |
|
28 |
|
uzssz |
|
29 |
4
|
eleq2i |
|
30 |
29
|
biimpi |
|
31 |
28 30
|
sselid |
|
32 |
31
|
3ad2ant2 |
|
33 |
|
eqid |
|
34 |
4
|
fvexi |
|
35 |
34
|
a1i |
|
36 |
4
|
uztrn2 |
|
37 |
36
|
ssd |
|
38 |
37
|
3ad2ant2 |
|
39 |
|
fvexd |
|
40 |
|
fvexd |
|
41 |
|
ssidd |
|
42 |
|
fvexd |
|
43 |
|
eqidd |
|
44 |
27 32 33 35 38 39 40 41 42 43
|
climfveqmpt |
|
45 |
6
|
eleq2i |
|
46 |
45
|
biimpi |
|
47 |
|
nfcv |
|
48 |
11 47
|
nffv |
|
49 |
8 48
|
nfmpt |
|
50 |
|
nfcv |
|
51 |
49 50
|
nfel |
|
52 |
|
fveq2 |
|
53 |
52
|
mpteq2dv |
|
54 |
53
|
eleq1d |
|
55 |
47 14 51 54
|
elrabf |
|
56 |
55
|
biimpi |
|
57 |
56
|
simprd |
|
58 |
46 57
|
syl |
|
59 |
58
|
adantr |
|
60 |
|
nfmpt1 |
|
61 |
|
nfcv |
|
62 |
60 61
|
nfel |
|
63 |
|
nfv |
|
64 |
63
|
nfci |
|
65 |
64 25
|
nfiun |
|
66 |
62 65
|
nfrabw |
|
67 |
6 66
|
nfcxfr |
|
68 |
24 67
|
nfel |
|
69 |
68 23
|
nfan |
|
70 |
31
|
adantl |
|
71 |
34
|
a1i |
|
72 |
37
|
adantl |
|
73 |
|
fvexd |
|
74 |
|
fvexd |
|
75 |
|
ssidd |
|
76 |
|
fvexd |
|
77 |
|
eqidd |
|
78 |
69 70 33 71 72 73 74 75 76 77
|
climeldmeqmpt |
|
79 |
59 78
|
mpbid |
|
80 |
|
climdm |
|
81 |
79 80
|
sylib |
|
82 |
7 81
|
sylan |
|
83 |
82
|
3adant3 |
|
84 |
|
simpl1 |
|
85 |
|
simpl2 |
|
86 |
|
nfcv |
|
87 |
|
nfcv |
|
88 |
2 87
|
nffv |
|
89 |
88
|
nfdm |
|
90 |
|
fveq2 |
|
91 |
90
|
dmeqd |
|
92 |
86 89 91
|
cbviin |
|
93 |
92
|
eleq2i |
|
94 |
93
|
biimpi |
|
95 |
94
|
adantr |
|
96 |
|
simpr |
|
97 |
|
eliinid |
|
98 |
95 96 97
|
syl2anc |
|
99 |
98
|
3ad2antl3 |
|
100 |
|
simpr |
|
101 |
|
id |
|
102 |
|
fvexd |
|
103 |
88 24
|
nffv |
|
104 |
90
|
fveq1d |
|
105 |
|
eqid |
|
106 |
87 103 104 105
|
fvmptf |
|
107 |
101 102 106
|
syl2anc |
|
108 |
107
|
adantl |
|
109 |
|
simpll |
|
110 |
36
|
adantll |
|
111 |
1 63
|
nfan |
|
112 |
|
nfcv |
|
113 |
88 89 112
|
nff |
|
114 |
111 113
|
nfim |
|
115 |
|
eleq1w |
|
116 |
115
|
anbi2d |
|
117 |
90 91
|
feq12d |
|
118 |
116 117
|
imbi12d |
|
119 |
114 118 5
|
chvarfv |
|
120 |
109 110 119
|
syl2anc |
|
121 |
120
|
3adantl3 |
|
122 |
|
simpl3 |
|
123 |
121 122
|
ffvelrnd |
|
124 |
108 123
|
eqeltrd |
|
125 |
84 85 99 100 124
|
syl31anc |
|
126 |
33 32 83 125
|
climrecl |
|
127 |
44 126
|
eqeltrd |
|
128 |
127
|
3exp |
|
129 |
21 22 128
|
rexlimd |
|
130 |
20 129
|
mpd |
|