Metamath Proof Explorer


Theorem fnmap

Description: Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion fnmap 𝑚 Fn V × V

Proof

Step Hyp Ref Expression
1 df-map 𝑚 = x V , y V f | f : y x
2 mapex y V x V f | f : y x V
3 2 el2v f | f : y x V
4 1 3 fnmpoi 𝑚 Fn V × V