Metamath Proof Explorer


Theorem fnmpo

Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010)

Ref Expression
Hypothesis fmpo.1 F = x A , y B C
Assertion fnmpo x A y B C V F Fn A × B

Proof

Step Hyp Ref Expression
1 fmpo.1 F = x A , y B C
2 elex C V C V
3 2 2ralimi x A y B C V x A y B C V
4 1 fmpo x A y B C V F : A × B V
5 dffn2 F Fn A × B F : A × B V
6 4 5 bitr4i x A y B C V F Fn A × B
7 3 6 sylib x A y B C V F Fn A × B