Metamath Proof Explorer


Theorem fnmpoovd

Description: A function with a Cartesian product as domain is a mapping with two arguments defined by its operation values. (Contributed by AV, 20-Feb-2019) (Revised by AV, 3-Jul-2022)

Ref Expression
Hypotheses fnmpoovd.m φ M Fn A × B
fnmpoovd.s i = a j = b D = C
fnmpoovd.d φ i A j B D U
fnmpoovd.c φ a A b B C V
Assertion fnmpoovd φ M = a A , b B C i A j B i M j = D

Proof

Step Hyp Ref Expression
1 fnmpoovd.m φ M Fn A × B
2 fnmpoovd.s i = a j = b D = C
3 fnmpoovd.d φ i A j B D U
4 fnmpoovd.c φ a A b B C V
5 4 3expb φ a A b B C V
6 5 ralrimivva φ a A b B C V
7 eqid a A , b B C = a A , b B C
8 7 fnmpo a A b B C V a A , b B C Fn A × B
9 6 8 syl φ a A , b B C Fn A × B
10 eqfnov2 M Fn A × B a A , b B C Fn A × B M = a A , b B C i A j B i M j = i a A , b B C j
11 1 9 10 syl2anc φ M = a A , b B C i A j B i M j = i a A , b B C j
12 nfcv _ a D
13 nfcv _ b D
14 nfcv _ i C
15 nfcv _ j C
16 12 13 14 15 2 cbvmpo i A , j B D = a A , b B C
17 16 eqcomi a A , b B C = i A , j B D
18 17 a1i φ a A , b B C = i A , j B D
19 18 oveqd φ i a A , b B C j = i i A , j B D j
20 19 eqeq2d φ i M j = i a A , b B C j i M j = i i A , j B D j
21 20 2ralbidv φ i A j B i M j = i a A , b B C j i A j B i M j = i i A , j B D j
22 simprl φ i A j B i A
23 simprr φ i A j B j B
24 3 3expb φ i A j B D U
25 eqid i A , j B D = i A , j B D
26 25 ovmpt4g i A j B D U i i A , j B D j = D
27 22 23 24 26 syl3anc φ i A j B i i A , j B D j = D
28 27 eqeq2d φ i A j B i M j = i i A , j B D j i M j = D
29 28 2ralbidva φ i A j B i M j = i i A , j B D j i A j B i M j = D
30 11 21 29 3bitrd φ M = a A , b B C i A j B i M j = D