Metamath Proof Explorer


Theorem fnmptif

Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses fnmptif.1 _ x A
fnmptif.2 B V
fnmptif.3 F = x A B
Assertion fnmptif F Fn A

Proof

Step Hyp Ref Expression
1 fnmptif.1 _ x A
2 fnmptif.2 B V
3 fnmptif.3 F = x A B
4 2 rgenw x A B V
5 1 mptfnf x A B V x A B Fn A
6 4 5 mpbi x A B Fn A
7 3 fneq1i F Fn A x A B Fn A
8 6 7 mpbir F Fn A