Metamath Proof Explorer


Theorem fnmrc

Description: Moore-closure is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion fnmrc mrCls Fn ran Moore

Proof

Step Hyp Ref Expression
1 df-mrc mrCls = c ran Moore x 𝒫 c s c | x s
2 1 fnmpt c ran Moore x 𝒫 c s c | x s V mrCls Fn ran Moore
3 mreunirn c ran Moore c Moore c
4 mrcflem c Moore c x 𝒫 c s c | x s : 𝒫 c c
5 fssxp x 𝒫 c s c | x s : 𝒫 c c x 𝒫 c s c | x s 𝒫 c × c
6 4 5 syl c Moore c x 𝒫 c s c | x s 𝒫 c × c
7 vuniex c V
8 7 pwex 𝒫 c V
9 vex c V
10 8 9 xpex 𝒫 c × c V
11 ssexg x 𝒫 c s c | x s 𝒫 c × c 𝒫 c × c V x 𝒫 c s c | x s V
12 6 10 11 sylancl c Moore c x 𝒫 c s c | x s V
13 3 12 sylbi c ran Moore x 𝒫 c s c | x s V
14 2 13 mprg mrCls Fn ran Moore