Database
BASIC STRUCTURES
Moore spaces
Moore closures
fnmrc
Next ⟩
mrcfval
Metamath Proof Explorer
Ascii
Unicode
Theorem
fnmrc
Description:
Moore-closure is a well-behaved function.
(Contributed by
Stefan O'Rear
, 1-Feb-2015)
Ref
Expression
Assertion
fnmrc
⊢
mrCls
Fn
⋃
ran
⁡
Moore
Proof
Step
Hyp
Ref
Expression
1
df-mrc
⊢
mrCls
=
c
∈
⋃
ran
⁡
Moore
⟼
x
∈
𝒫
⋃
c
⟼
⋂
s
∈
c
|
x
⊆
s
2
1
fnmpt
⊢
∀
c
∈
⋃
ran
⁡
Moore
x
∈
𝒫
⋃
c
⟼
⋂
s
∈
c
|
x
⊆
s
∈
V
→
mrCls
Fn
⋃
ran
⁡
Moore
3
mreunirn
⊢
c
∈
⋃
ran
⁡
Moore
↔
c
∈
Moore
⁡
⋃
c
4
mrcflem
⊢
c
∈
Moore
⁡
⋃
c
→
x
∈
𝒫
⋃
c
⟼
⋂
s
∈
c
|
x
⊆
s
:
𝒫
⋃
c
⟶
c
5
fssxp
⊢
x
∈
𝒫
⋃
c
⟼
⋂
s
∈
c
|
x
⊆
s
:
𝒫
⋃
c
⟶
c
→
x
∈
𝒫
⋃
c
⟼
⋂
s
∈
c
|
x
⊆
s
⊆
𝒫
⋃
c
×
c
6
4
5
syl
⊢
c
∈
Moore
⁡
⋃
c
→
x
∈
𝒫
⋃
c
⟼
⋂
s
∈
c
|
x
⊆
s
⊆
𝒫
⋃
c
×
c
7
vuniex
⊢
⋃
c
∈
V
8
7
pwex
⊢
𝒫
⋃
c
∈
V
9
vex
⊢
c
∈
V
10
8
9
xpex
⊢
𝒫
⋃
c
×
c
∈
V
11
ssexg
⊢
x
∈
𝒫
⋃
c
⟼
⋂
s
∈
c
|
x
⊆
s
⊆
𝒫
⋃
c
×
c
∧
𝒫
⋃
c
×
c
∈
V
→
x
∈
𝒫
⋃
c
⟼
⋂
s
∈
c
|
x
⊆
s
∈
V
12
6
10
11
sylancl
⊢
c
∈
Moore
⁡
⋃
c
→
x
∈
𝒫
⋃
c
⟼
⋂
s
∈
c
|
x
⊆
s
∈
V
13
3
12
sylbi
⊢
c
∈
⋃
ran
⁡
Moore
→
x
∈
𝒫
⋃
c
⟼
⋂
s
∈
c
|
x
⊆
s
∈
V
14
2
13
mprg
⊢
mrCls
Fn
⋃
ran
⁡
Moore