| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnn0ind.1 |
|
| 2 |
|
fnn0ind.2 |
|
| 3 |
|
fnn0ind.3 |
|
| 4 |
|
fnn0ind.4 |
|
| 5 |
|
fnn0ind.5 |
|
| 6 |
|
fnn0ind.6 |
|
| 7 |
|
elnn0z |
|
| 8 |
|
nn0z |
|
| 9 |
|
0z |
|
| 10 |
|
elnn0z |
|
| 11 |
10 5
|
sylbir |
|
| 12 |
11
|
3adant1 |
|
| 13 |
|
0re |
|
| 14 |
|
zre |
|
| 15 |
|
zre |
|
| 16 |
|
lelttr |
|
| 17 |
|
ltle |
|
| 18 |
17
|
3adant2 |
|
| 19 |
16 18
|
syld |
|
| 20 |
13 14 15 19
|
mp3an3an |
|
| 21 |
20
|
ex |
|
| 22 |
21
|
com23 |
|
| 23 |
22
|
3impib |
|
| 24 |
23
|
impcom |
|
| 25 |
|
elnn0z |
|
| 26 |
25
|
anbi1i |
|
| 27 |
6
|
3expb |
|
| 28 |
10 26 27
|
syl2anbr |
|
| 29 |
28
|
expcom |
|
| 30 |
29
|
3impa |
|
| 31 |
30
|
expd |
|
| 32 |
31
|
impcom |
|
| 33 |
24 32
|
mpd |
|
| 34 |
33
|
adantll |
|
| 35 |
1 2 3 4 12 34
|
fzind |
|
| 36 |
9 35
|
mpanl1 |
|
| 37 |
36
|
expcom |
|
| 38 |
8 37
|
syl5 |
|
| 39 |
38
|
3expa |
|
| 40 |
7 39
|
sylanb |
|
| 41 |
40
|
impcom |
|
| 42 |
41
|
3impb |
|