Metamath Proof Explorer


Theorem fnoe

Description: Functionality and domain of ordinal exponentiation. (Contributed by Mario Carneiro, 29-May-2015)

Ref Expression
Assertion fnoe 𝑜 Fn On × On

Proof

Step Hyp Ref Expression
1 df-oexp 𝑜 = x On , y On if x = 1 𝑜 y rec z V z 𝑜 x 1 𝑜 y
2 1on 1 𝑜 On
3 difexg 1 𝑜 On 1 𝑜 y V
4 2 3 ax-mp 1 𝑜 y V
5 fvex rec z V z 𝑜 x 1 𝑜 y V
6 4 5 ifex if x = 1 𝑜 y rec z V z 𝑜 x 1 𝑜 y V
7 1 6 fnmpoi 𝑜 Fn On × On