Metamath Proof Explorer


Theorem fnopab

Description: Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996)

Ref Expression
Hypotheses fnopab.1 x A ∃! y φ
fnopab.2 F = x y | x A φ
Assertion fnopab F Fn A

Proof

Step Hyp Ref Expression
1 fnopab.1 x A ∃! y φ
2 fnopab.2 F = x y | x A φ
3 1 rgen x A ∃! y φ
4 2 fnopabg x A ∃! y φ F Fn A
5 3 4 mpbi F Fn A