Metamath Proof Explorer


Theorem fnov

Description: Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion fnov F Fn A × B F = x A , y B x F y

Proof

Step Hyp Ref Expression
1 dffn5 F Fn A × B F = z A × B F z
2 fveq2 z = x y F z = F x y
3 df-ov x F y = F x y
4 2 3 eqtr4di z = x y F z = x F y
5 4 mpompt z A × B F z = x A , y B x F y
6 5 eqeq2i F = z A × B F z F = x A , y B x F y
7 1 6 bitri F Fn A × B F = x A , y B x F y