Metamath Proof Explorer


Theorem fnpm

Description: Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013)

Ref Expression
Assertion fnpm 𝑝𝑚 Fn V × V

Proof

Step Hyp Ref Expression
1 df-pm 𝑝𝑚 = x V , y V f 𝒫 y × x | Fun f
2 vex y V
3 vex x V
4 2 3 xpex y × x V
5 4 pwex 𝒫 y × x V
6 5 rabex f 𝒫 y × x | Fun f V
7 1 6 fnmpoi 𝑝𝑚 Fn V × V