Database
BASIC STRUCTURES
Extensible structures
Definition of the structure quotient
fnpr2o
Next ⟩
fnpr2ob
Metamath Proof Explorer
Ascii
Unicode
Theorem
fnpr2o
Description:
Function with a domain of
2o
.
(Contributed by
Jim Kingdon
, 25-Sep-2023)
Ref
Expression
Assertion
fnpr2o
⊢
A
∈
V
∧
B
∈
W
→
∅
A
1
𝑜
B
Fn
2
𝑜
Proof
Step
Hyp
Ref
Expression
1
peano1
⊢
∅
∈
ω
2
1
a1i
⊢
A
∈
V
∧
B
∈
W
→
∅
∈
ω
3
1onn
⊢
1
𝑜
∈
ω
4
3
a1i
⊢
A
∈
V
∧
B
∈
W
→
1
𝑜
∈
ω
5
simpl
⊢
A
∈
V
∧
B
∈
W
→
A
∈
V
6
simpr
⊢
A
∈
V
∧
B
∈
W
→
B
∈
W
7
1n0
⊢
1
𝑜
≠
∅
8
7
necomi
⊢
∅
≠
1
𝑜
9
8
a1i
⊢
A
∈
V
∧
B
∈
W
→
∅
≠
1
𝑜
10
fnprg
⊢
∅
∈
ω
∧
1
𝑜
∈
ω
∧
A
∈
V
∧
B
∈
W
∧
∅
≠
1
𝑜
→
∅
A
1
𝑜
B
Fn
∅
1
𝑜
11
2
4
5
6
9
10
syl221anc
⊢
A
∈
V
∧
B
∈
W
→
∅
A
1
𝑜
B
Fn
∅
1
𝑜
12
df2o3
⊢
2
𝑜
=
∅
1
𝑜
13
12
fneq2i
⊢
∅
A
1
𝑜
B
Fn
2
𝑜
↔
∅
A
1
𝑜
B
Fn
∅
1
𝑜
14
11
13
sylibr
⊢
A
∈
V
∧
B
∈
W
→
∅
A
1
𝑜
B
Fn
2
𝑜