Metamath Proof Explorer


Theorem fnprg

Description: Function with a domain of two different values. (Contributed by FL, 26-Jun-2011) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion fnprg A V B W C X D Y A B A C B D Fn A B

Proof

Step Hyp Ref Expression
1 funprg A V B W C X D Y A B Fun A C B D
2 dmpropg C X D Y dom A C B D = A B
3 2 3ad2ant2 A V B W C X D Y A B dom A C B D = A B
4 df-fn A C B D Fn A B Fun A C B D dom A C B D = A B
5 1 3 4 sylanbrc A V B W C X D Y A B A C B D Fn A B