Metamath Proof Explorer


Theorem fnrnov

Description: The range of an operation expressed as a collection of the operation's values. (Contributed by NM, 29-Oct-2006)

Ref Expression
Assertion fnrnov FFnA×BranF=z|xAyBz=xFy

Proof

Step Hyp Ref Expression
1 fnrnfv FFnA×BranF=z|wA×Bz=Fw
2 fveq2 w=xyFw=Fxy
3 df-ov xFy=Fxy
4 2 3 eqtr4di w=xyFw=xFy
5 4 eqeq2d w=xyz=Fwz=xFy
6 5 rexxp wA×Bz=FwxAyBz=xFy
7 6 abbii z|wA×Bz=Fw=z|xAyBz=xFy
8 1 7 eqtrdi FFnA×BranF=z|xAyBz=xFy