| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnse.1 |
|
| 2 |
|
fnse.2 |
|
| 3 |
|
fnse.3 |
|
| 4 |
|
fnse.4 |
|
| 5 |
2
|
ffvelcdmda |
|
| 6 |
|
seex |
|
| 7 |
3 5 6
|
syl2an2r |
|
| 8 |
|
snex |
|
| 9 |
|
unexg |
|
| 10 |
7 8 9
|
sylancl |
|
| 11 |
|
imaeq2 |
|
| 12 |
11
|
eleq1d |
|
| 13 |
12
|
imbi2d |
|
| 14 |
13 4
|
vtoclg |
|
| 15 |
14
|
impcom |
|
| 16 |
10 15
|
syldan |
|
| 17 |
|
inss2 |
|
| 18 |
|
vex |
|
| 19 |
18
|
eliniseg |
|
| 20 |
19
|
elv |
|
| 21 |
|
fveq2 |
|
| 22 |
|
fveq2 |
|
| 23 |
21 22
|
breqan12d |
|
| 24 |
21 22
|
eqeqan12d |
|
| 25 |
|
breq12 |
|
| 26 |
24 25
|
anbi12d |
|
| 27 |
23 26
|
orbi12d |
|
| 28 |
27 1
|
brab2a |
|
| 29 |
2
|
ffvelcdmda |
|
| 30 |
29
|
adantrr |
|
| 31 |
|
breq1 |
|
| 32 |
31
|
elrab3 |
|
| 33 |
30 32
|
syl |
|
| 34 |
33
|
biimprd |
|
| 35 |
|
simpl |
|
| 36 |
|
fvex |
|
| 37 |
36
|
elsn |
|
| 38 |
35 37
|
sylibr |
|
| 39 |
38
|
a1i |
|
| 40 |
34 39
|
orim12d |
|
| 41 |
|
elun |
|
| 42 |
40 41
|
imbitrrdi |
|
| 43 |
|
simprl |
|
| 44 |
42 43
|
jctild |
|
| 45 |
2
|
ffnd |
|
| 46 |
45
|
adantr |
|
| 47 |
|
elpreima |
|
| 48 |
46 47
|
syl |
|
| 49 |
44 48
|
sylibrd |
|
| 50 |
49
|
expimpd |
|
| 51 |
28 50
|
biimtrid |
|
| 52 |
20 51
|
biimtrid |
|
| 53 |
52
|
ssrdv |
|
| 54 |
17 53
|
sstrid |
|
| 55 |
54
|
adantr |
|
| 56 |
16 55
|
ssexd |
|
| 57 |
56
|
ralrimiva |
|
| 58 |
|
dfse2 |
|
| 59 |
57 58
|
sylibr |
|