Metamath Proof Explorer


Theorem fnse

Description: Condition for the well-order in fnwe to be set-like. (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Hypotheses fnse.1 T = x y | x A y A F x R F y F x = F y x S y
fnse.2 φ F : A B
fnse.3 φ R Se B
fnse.4 φ F -1 w V
Assertion fnse φ T Se A

Proof

Step Hyp Ref Expression
1 fnse.1 T = x y | x A y A F x R F y F x = F y x S y
2 fnse.2 φ F : A B
3 fnse.3 φ R Se B
4 fnse.4 φ F -1 w V
5 2 ffvelrnda φ z A F z B
6 seex R Se B F z B u B | u R F z V
7 3 5 6 syl2an2r φ z A u B | u R F z V
8 snex F z V
9 unexg u B | u R F z V F z V u B | u R F z F z V
10 7 8 9 sylancl φ z A u B | u R F z F z V
11 imaeq2 w = u B | u R F z F z F -1 w = F -1 u B | u R F z F z
12 11 eleq1d w = u B | u R F z F z F -1 w V F -1 u B | u R F z F z V
13 12 imbi2d w = u B | u R F z F z φ F -1 w V φ F -1 u B | u R F z F z V
14 13 4 vtoclg u B | u R F z F z V φ F -1 u B | u R F z F z V
15 14 impcom φ u B | u R F z F z V F -1 u B | u R F z F z V
16 10 15 syldan φ z A F -1 u B | u R F z F z V
17 inss2 A T -1 z T -1 z
18 vex w V
19 18 eliniseg z V w T -1 z w T z
20 19 elv w T -1 z w T z
21 fveq2 x = w F x = F w
22 fveq2 y = z F y = F z
23 21 22 breqan12d x = w y = z F x R F y F w R F z
24 21 22 eqeqan12d x = w y = z F x = F y F w = F z
25 breq12 x = w y = z x S y w S z
26 24 25 anbi12d x = w y = z F x = F y x S y F w = F z w S z
27 23 26 orbi12d x = w y = z F x R F y F x = F y x S y F w R F z F w = F z w S z
28 27 1 brab2a w T z w A z A F w R F z F w = F z w S z
29 2 ffvelrnda φ w A F w B
30 29 adantrr φ w A z A F w B
31 breq1 u = F w u R F z F w R F z
32 31 elrab3 F w B F w u B | u R F z F w R F z
33 30 32 syl φ w A z A F w u B | u R F z F w R F z
34 33 biimprd φ w A z A F w R F z F w u B | u R F z
35 simpl F w = F z w S z F w = F z
36 fvex F w V
37 36 elsn F w F z F w = F z
38 35 37 sylibr F w = F z w S z F w F z
39 38 a1i φ w A z A F w = F z w S z F w F z
40 34 39 orim12d φ w A z A F w R F z F w = F z w S z F w u B | u R F z F w F z
41 elun F w u B | u R F z F z F w u B | u R F z F w F z
42 40 41 syl6ibr φ w A z A F w R F z F w = F z w S z F w u B | u R F z F z
43 simprl φ w A z A w A
44 42 43 jctild φ w A z A F w R F z F w = F z w S z w A F w u B | u R F z F z
45 2 ffnd φ F Fn A
46 45 adantr φ w A z A F Fn A
47 elpreima F Fn A w F -1 u B | u R F z F z w A F w u B | u R F z F z
48 46 47 syl φ w A z A w F -1 u B | u R F z F z w A F w u B | u R F z F z
49 44 48 sylibrd φ w A z A F w R F z F w = F z w S z w F -1 u B | u R F z F z
50 49 expimpd φ w A z A F w R F z F w = F z w S z w F -1 u B | u R F z F z
51 28 50 syl5bi φ w T z w F -1 u B | u R F z F z
52 20 51 syl5bi φ w T -1 z w F -1 u B | u R F z F z
53 52 ssrdv φ T -1 z F -1 u B | u R F z F z
54 17 53 sstrid φ A T -1 z F -1 u B | u R F z F z
55 54 adantr φ z A A T -1 z F -1 u B | u R F z F z
56 16 55 ssexd φ z A A T -1 z V
57 56 ralrimiva φ z A A T -1 z V
58 dfse2 T Se A z A A T -1 z V
59 57 58 sylibr φ T Se A