Metamath Proof Explorer


Theorem fnseqom

Description: An index-aware recursive definition defines a function on the natural numbers. (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Hypothesis seqom.a G = seq ω F I
Assertion fnseqom G Fn ω

Proof

Step Hyp Ref Expression
1 seqom.a G = seq ω F I
2 seqomlem0 rec a ω , b V suc a a F b I I = rec c ω , d V suc c c F d I I
3 2 seqomlem2 rec a ω , b V suc a a F b I I ω Fn ω
4 df-seqom seq ω F I = rec a ω , b V suc a a F b I I ω
5 1 4 eqtri G = rec a ω , b V suc a a F b I I ω
6 5 fneq1i G Fn ω rec a ω , b V suc a a F b I I ω Fn ω
7 3 6 mpbir G Fn ω