Metamath Proof Explorer


Theorem fnssresd

Description: Restriction of a function to a subclass of its domain. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses fnssresd.1 φ F Fn A
fnssresd.2 φ B A
Assertion fnssresd φ F B Fn B

Proof

Step Hyp Ref Expression
1 fnssresd.1 φ F Fn A
2 fnssresd.2 φ B A
3 fnssres F Fn A B A F B Fn B
4 1 2 3 syl2anc φ F B Fn B