Step |
Hyp |
Ref |
Expression |
1 |
|
fndm |
|
2 |
1
|
rabeqdv |
|
3 |
2
|
3ad2ant1 |
|
4 |
3
|
sseq1d |
|
5 |
|
unss |
|
6 |
|
ssrab2 |
|
7 |
6
|
biantrur |
|
8 |
|
rabun2 |
|
9 |
8
|
sseq1i |
|
10 |
5 7 9
|
3bitr4ri |
|
11 |
|
rabss |
|
12 |
|
fvres |
|
13 |
12
|
adantl |
|
14 |
|
simp2r |
|
15 |
|
fvconst2g |
|
16 |
14 15
|
sylan |
|
17 |
13 16
|
eqeq12d |
|
18 |
|
nne |
|
19 |
18
|
a1i |
|
20 |
|
id |
|
21 |
|
simp3 |
|
22 |
|
minel |
|
23 |
20 21 22
|
syl2anr |
|
24 |
|
mtt |
|
25 |
23 24
|
syl |
|
26 |
17 19 25
|
3bitr2rd |
|
27 |
26
|
ralbidva |
|
28 |
11 27
|
syl5bb |
|
29 |
10 28
|
syl5bb |
|
30 |
4 29
|
bitrd |
|
31 |
|
fnfun |
|
32 |
31
|
3anim1i |
|
33 |
32
|
3expb |
|
34 |
|
suppval1 |
|
35 |
33 34
|
syl |
|
36 |
35
|
3adant3 |
|
37 |
36
|
sseq1d |
|
38 |
|
simp1 |
|
39 |
|
ssun2 |
|
40 |
39
|
a1i |
|
41 |
|
fnssres |
|
42 |
38 40 41
|
syl2anc |
|
43 |
|
fnconstg |
|
44 |
43
|
adantl |
|
45 |
44
|
3ad2ant2 |
|
46 |
|
eqfnfv |
|
47 |
42 45 46
|
syl2anc |
|
48 |
30 37 47
|
3bitr4d |
|