Metamath Proof Explorer


Theorem fntp

Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses fntp.1 A V
fntp.2 B V
fntp.3 C V
fntp.4 D V
fntp.5 E V
fntp.6 F V
Assertion fntp A B A C B C A D B E C F Fn A B C

Proof

Step Hyp Ref Expression
1 fntp.1 A V
2 fntp.2 B V
3 fntp.3 C V
4 fntp.4 D V
5 fntp.5 E V
6 fntp.6 F V
7 1 2 3 4 5 6 funtp A B A C B C Fun A D B E C F
8 4 5 6 dmtpop dom A D B E C F = A B C
9 df-fn A D B E C F Fn A B C Fun A D B E C F dom A D B E C F = A B C
10 7 8 9 sylanblrc A B A C B C A D B E C F Fn A B C