Metamath Proof Explorer


Theorem fnum

Description: Canonical numerator defines a function. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion fnum numer :

Proof

Step Hyp Ref Expression
1 df-numer numer = a 1 st ι b × | 1 st b gcd 2 nd b = 1 a = 1 st b 2 nd b
2 qnumval a numer a = 1 st ι b × | 1 st b gcd 2 nd b = 1 a = 1 st b 2 nd b
3 qnumcl a numer a
4 2 3 eqeltrrd a 1 st ι b × | 1 st b gcd 2 nd b = 1 a = 1 st b 2 nd b
5 1 4 fmpti numer :